Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 88(6): 4262-73, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15821161

ABSTRACT

Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry , Bacterial Proteins/genetics , Biophysical Phenomena , Biophysics , Colloids , Light-Harvesting Protein Complexes/genetics , Models, Molecular , Multiprotein Complexes , Mutation , Nanostructures , Photosystem II Protein Complex/genetics , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/genetics , Spectrophotometry , Titanium
2.
J Phys Chem B ; 109(36): 17066-77, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853176

ABSTRACT

To examine the mechanisms of electron injection to TiO2 in retinoic acid (RA) and carotenoic acids (CAs), including RA5, CA6, CA7, CA8, CA9, and CA11 having the number of conjugated double bonds n = 5, 6, 7, 8, 9, and 11, respectively, their subpicosecond time-resolved absorption spectra were recorded free in solution and bound to TiO2 nanoparticles in suspension. The time-resolved spectra were analyzed by singular-value decomposition (SVD) followed by global fitting based on an energy diagram consisting of the 3A(g)(-), 1B(u)(-), 1B(u)(+), and 2A(g)(-) singlet excited states, whose energies had been determined as functions of 1/(2n + 1) by the use of carotenoids with n = 9-13. It was found that electron injection took place from both the 1B(u)(+) and 2A(g)(-) states in RA5, CA6, CA7, and CA8, whereas only from the 1B(u)(+) state in CA9 and CA11. The electron-injection efficiencies were determined, by the use of the relevant time constants determined by the SVD and global-fitting analyses, to be in the following order: RA5 approximately CA6 < CA7 > CA8 > CA9 > CA11. To determine the mechanism of charge recombination via the T(1) state, submicrosecond time-resolved absorption spectra of RA5, CA6, CA7, and CA8 bound to TiO2 nanoparticles in suspension were recorded. The SVD and global-fitting analyses lead us to a new scheme, which includes the formation of the D(0)(*+) - T(1) complex followed by transformation to both the D(0)(*+) and T(1) states. On the other hand, their one-electron oxidation potentials were determined, and their singlet and triplet levels were scaled to the conduction band edge (CBE) of TiO2. The T(1) level was lower than, but closest to, the CBE in RA5, and it became lower in the order RA5, CA6, CA7, and CA8. Consistent with the energy gap between the CBE and the T(1) levels, the generation of the T(1) state (or in other words, charge recombination) decreased in the order RA5 > CA6 > CA7 > CA8.


Subject(s)
Carotenoids/chemistry , Electrons , Metal Nanoparticles/chemistry , Spectrum Analysis/methods , Titanium/chemistry , Tretinoin/chemistry , Molecular Structure
3.
Biopolymers ; 74(1-2): 2-18, 2004.
Article in English | MEDLINE | ID: mdl-15137086

ABSTRACT

This minireview article highlights the energetics and the dynamics of the 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids discovered very recently. Those "hidden" covalent states have been revealed by measurements of resonance-Raman excitation profiles of crystalline carotenoids. The dependence of the energies of the low-lying singlet states, including the 1(1)B(u)(+), 3(1)A(g)(-), 1(1)B(u)(-), and 2(1)A(g)(-) states, on the number of conjugated double bonds (n) is in agreement with the extrapolation of those state energies calculated by Tavan and Schulten for shorter polyenes (P. Tavan and K. Schulten, Journal of Chemical Physics, 1986, vol. 85, pp. 6602-6609). It has also been shown that the internal-conversion processes among those singlet states take place in accord with the state ordering, i.e., 1(1)B(u)(+) --> 1(1)B(u)(-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) (the ground state) for carotenoids having n = 9 and 10, whereas 1(1)B(u)(+) --> 3(1)A(g)(-) --> 1(1)B(u) (-) --> 2(1)A(g)(-) --> 1(1)A(g)(-) for carotenoids having n = 11-13. Radiative transitions of 1(1)B(u)(+) --> 2(1)A(g)(-) and 1(1)B(u)(-) --> 2(1)A(g)(-) as well as a branching into the triplet manifold of 1(1)B(u)(-) --> 1(3)A(g) --> 1(3)B(u) have also been found. Those low-lying singlet states of all-trans carotenoids can facilitate multiple channels of singlet-energy transfer to bacteriochlorophyll in the LH2 antenna complexes of purple photosynthetic bacteria. Thus, the newly found 1(1)B(u)(-) and 3(1)A(g)(-) states of carotenoids need to be incorporated into the picture of carotenoid-to-bacteriochlorophyll singlet-energy transfer.


Subject(s)
Carotenoids/chemistry , Photosynthesis , Xanthophylls/analogs & derivatives , Bacteriochlorophylls/chemistry , Biopolymers/chemistry , Carotenoids/pharmacology , Kinetics , Light , Lycopene , Models, Chemical , Polyenes/chemistry , Proteobacteria/metabolism , Spectrophotometry , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Time Factors , Xanthophylls/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...