Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240222

ABSTRACT

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Subject(s)
Embolic Stroke , Intracranial Embolism , Stroke , Humans , Stroke/diagnostic imaging , Stroke/epidemiology , Prevalence , Prospective Studies , Magnetic Resonance Imaging , Intracranial Embolism/diagnostic imaging , Intracranial Embolism/epidemiology , Risk Factors
2.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106921

ABSTRACT

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

3.
J Cardiovasc Electrophysiol ; 34(5): 1164-1174, 2023 05.
Article in English | MEDLINE | ID: mdl-36934383

ABSTRACT

BACKGROUND: Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation. METHODS: Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification. RESULTS: Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764). CONCLUSION: Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Male , Female , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Atrial Fibrillation/etiology , Retrospective Studies , Treatment Outcome , Heart Atria/diagnostic imaging , Heart Atria/surgery , Tomography, X-Ray Computed/methods , Catheter Ablation/adverse effects , Catheter Ablation/methods , Machine Learning , Recurrence , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery
4.
ArXiv ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-36776816

ABSTRACT

Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.

5.
Comput Biol Med ; 153: 106528, 2023 02.
Article in English | MEDLINE | ID: mdl-36634600

ABSTRACT

BACKGROUND: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD: We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS: We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS: We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Contrast Media , Uncertainty , Bayes Theorem , Gadolinium , Heart Atria , Magnetic Resonance Imaging/methods , Fibrosis
6.
IEEE Trans Biomed Eng ; 70(5): 1611-1621, 2023 05.
Article in English | MEDLINE | ID: mdl-36399589

ABSTRACT

Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.


Subject(s)
Atrial Fibrillation , Heart Conduction System , Humans , Arrhythmias, Cardiac , Heart Atria , Heart Rate , Electricity , Cardiac Pacing, Artificial
7.
Sci Rep ; 12(1): 16572, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195766

ABSTRACT

Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.


Subject(s)
Electrophysiologic Techniques, Cardiac , Heart Atria , Calibration , Cardiac Electrophysiology , Humans , Normal Distribution
8.
Front Physiol ; 13: 907190, 2022.
Article in English | MEDLINE | ID: mdl-36213235

ABSTRACT

Computer models capable of representing the intrinsic personal electrophysiology (EP) of the heart in silico are termed virtual heart technologies. When anatomy and EP are tailored to individual patients within the model, such technologies are promising clinical and industrial tools. Regardless of their vast potential, few virtual technologies simulating the entire organ-scale EP of all four-chambers of the heart have been reported and widespread clinical use is limited due to high computational costs and difficulty in validation. We thus report on the development of a novel virtual technology representing the electrophysiology of all four-chambers of the heart aiming to overcome these limitations. In our previous work, a model of ventricular EP embedded in a torso was constructed from clinical magnetic resonance image (MRI) data and personalized according to the measured 12 lead electrocardiogram (ECG) of a single subject under normal sinus rhythm. This model is then expanded upon to include whole heart EP and a detailed representation of the His-Purkinje system (HPS). To test the capacities of the personalized virtual heart technology to replicate standard clinical morphological ECG features under such conditions, bundle branch blocks within both the right and the left ventricles under two different conduction velocity settings are modeled alongside sinus rhythm. To ensure clinical viability, model generation was completely automated and simulations were performed using an efficient real-time cardiac EP simulator. Close correspondence between the measured and simulated 12 lead ECG was observed under normal sinus conditions and all simulated bundle branch blocks manifested relevant clinical morphological features.

9.
Front Physiol ; 13: 920788, 2022.
Article in English | MEDLINE | ID: mdl-36148313

ABSTRACT

Background and Objective: Renewal theory is a statistical approach to model the formation and destruction of phase singularities (PS), which occur at the pivots of spiral waves. A common issue arising during observation of renewal processes is an inspection paradox, due to oversampling of longer events. The objective of this study was to characterise the effect of a potential inspection paradox on the perception of PS lifetimes in cardiac fibrillation. Methods: A multisystem, multi-modality study was performed, examining computational simulations (Aliev-Panfilov (APV) model, Courtmanche-Nattel model), experimentally acquired optical mapping Atrial and Ventricular Fibrillation (AF/VF) data, and clinically acquired human AF and VF. Distributions of all PS lifetimes across full epochs of AF, VF, or computational simulations, were compared with distributions formed from lifetimes of PS existing at 10,000 simulated commencement timepoints. Results: In all systems, an inspection paradox led towards oversampling of PS with longer lifetimes. In APV computational simulations there was a mean PS lifetime shift of +84.9% (95% CI, ± 0.3%) (p < 0.001 for observed vs overall), in Courtmanche-Nattel simulations of AF +692.9% (95% CI, ±57.7%) (p < 0.001), in optically mapped rat AF +374.6% (95% CI, ± 88.5%) (p = 0.052), in human AF mapped with basket catheters +129.2% (95% CI, ±4.1%) (p < 0.05), human AF-HD grid catheters 150.8% (95% CI, ± 9.0%) (p < 0.001), in optically mapped rat VF +171.3% (95% CI, ±15.6%) (p < 0.001), in human epicardial VF 153.5% (95% CI, ±15.7%) (p < 0.001). Conclusion: Visual inspection of phase movies has the potential to systematically oversample longer lasting PS, due to an inspection paradox. An inspection paradox is minimised by consideration of the overall distribution of PS lifetimes.

10.
Heart Rhythm O2 ; 3(2): 196-203, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35496458

ABSTRACT

Background: Initiation of anticoagulation therapy in ischemic stroke patients is contingent on a clinical diagnosis of atrial fibrillation (AF). Results from previous studies suggest thromboembolic risk may predate clinical manifestations of AF. Early identification of this cohort of patients may allow early initiation of anticoagulation and reduce the risk of secondary stroke. Objective: This study aims to produce a substrate-based predictive model using cardiac magnetic resonance imaging (CMR) and baseline noninvasive electrocardiographic investigations to improve the identification of patients at risk of future thromboembolism. Methods: CARM-AF is a prospective, multicenter, observational cohort study. Ninety-two patients will be recruited following an embolic stroke of unknown source (ESUS) and undergo atrial CMR followed by insertion of an implantable loop recorder (ILR) as per routine clinical care within 3 months of index stroke. Remote ILR follow-up will be used to allocate patients to a study or control group determined by the presence or absence of AF as defined by ILR monitoring. Results: Baseline data collection, noninvasive electrocardiographic data analysis, and imaging postprocessing will be performed at the time of enrollment. Primary analysis will be performed following 12 months of continuous ILR monitoring, with interim and delayed analyses performed at 6 months and 2 and 3 years, respectively. Conclusion: The CARM-AF Study will use atrial structural and electrocardiographic metrics to identify patients with AF, or at high risk of developing AF, who may benefit from early initiation of anticoagulation.

11.
PLoS Comput Biol ; 18(3): e1009893, 2022 03.
Article in English | MEDLINE | ID: mdl-35312675

ABSTRACT

Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Electrocardiography , Heart Atria , Humans
12.
Circ Arrhythm Electrophysiol ; 15(2): e010253, 2022 02.
Article in English | MEDLINE | ID: mdl-35089057

ABSTRACT

BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. METHODS: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. RESULTS: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85±0.09; recall, 0.80±0.13; precision, 0.74±0.13) outperformed those trained to history and imaging (area under the curve, 0.66±0.17) or history alone (area under the curve, 0.61±0.14). CONCLUSION: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation.


Subject(s)
Atrial Fibrillation/surgery , Atrial Function, Left , Atrial Remodeling , Catheter Ablation/adverse effects , Heart Rate , Machine Learning , Models, Cardiovascular , Patient-Specific Modeling , Action Potentials , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Electrocardiography, Ambulatory , Fibrosis , Humans , Magnetic Resonance Imaging , Recurrence , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
13.
Front Cardiovasc Med ; 8: 744779, 2021.
Article in English | MEDLINE | ID: mdl-34765656

ABSTRACT

Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials.

14.
Eur Heart J Cardiovasc Imaging ; 23(1): 31-41, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34747450

ABSTRACT

Atrial arrhythmias, including atrial fibrillation and atrial flutter, may be treated through catheter ablation. The process of atrial arrhythmia catheter ablation, which includes patient selection, pre-procedural planning, intra-procedural guidance, and post-procedural assessment, is typically characterized by the use of several imaging modalities to sequentially inform key clinical decisions. Increasingly, advanced imaging modalities are processed via specialized image analysis techniques and combined with intra-procedural electrical measurements to inform treatment approaches. Here, we review the use of multimodality imaging for left atrial ablation procedures. The article first outlines how imaging modalities are routinely used in the peri-ablation period. We then describe how advanced imaging techniques may inform patient selection for ablation and ablation targets themselves. Ongoing research directions for improving catheter ablation outcomes by using imaging combined with advanced analyses for personalization of ablation targets are discussed, together with approaches for their integration in the standard clinical environment. Finally, we describe future research areas with the potential to improve catheter ablation outcomes.


Subject(s)
Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Atrial Flutter/diagnostic imaging , Atrial Flutter/surgery , Catheter Ablation/methods , Heart Atria/diagnostic imaging , Heart Atria/surgery , Humans , Multimodal Imaging , Treatment Outcome
15.
Front Physiol ; 12: 707189, 2021.
Article in English | MEDLINE | ID: mdl-34646149

ABSTRACT

Electrical activation during atrial fibrillation (AF) appears chaotic and disorganised, which impedes characterisation of the underlying substrate and treatment planning. While globally chaotic, there may be local preferential activation pathways that represent potential ablation targets. This study aimed to identify preferential activation pathways during AF and predict the acute ablation response when these are targeted by pulmonary vein isolation (PVI). In patients with persistent AF (n = 14), simultaneous biatrial contact mapping with basket catheters was performed pre-ablation and following each ablation strategy (PVI, roof, and mitral lines). Unipolar wavefront activation directions were averaged over 10 s to identify preferential activation pathways. Clinical cases were classified as responders or non-responders to PVI during the procedure. Clinical data were augmented with a virtual cohort of 100 models. In AF pre-ablation, pathways originated from the pulmonary vein (PV) antra in PVI responders (7/7) but not in PVI non-responders (6/6). We proposed a novel index that measured activation waves from the PV antra into the atrial body. This index was significantly higher in PVI responders than non-responders (clinical: 16.3 vs. 3.7%, p = 0.04; simulated: 21.1 vs. 14.1%, p = 0.02). Overall, this novel technique and proof of concept study demonstrated that preferential activation pathways exist during AF. Targeting patient-specific activation pathways that flowed from the PV antra to the left atrial body using PVI resulted in AF termination during the procedure. These PV activation flow pathways may correspond to the presence of drivers in the PV regions.

16.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33942719

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has revealed fibrosis in embolic stroke of undetermined source (ESUS) patients comparable to levels seen in atrial fibrillation (AFib). We used computational modeling to understand the absence of arrhythmia in ESUS despite the presence of putatively pro-arrhythmic fibrosis. MRI-based atrial models were reconstructed for 45 ESUS and 45 AFib patients. The fibrotic substrate's arrhythmogenic capacity in each patient was assessed computationally. Reentrant drivers were induced in 24/45 (53%) ESUS and 22/45 (49%) AFib models. Inducible models had more fibrosis (16.7 ± 5.45%) than non-inducible models (11.07 ± 3.61%; p<0.0001); however, inducible subsets of ESUS and AFib models had similar fibrosis levels (p=0.90), meaning that the intrinsic pro-arrhythmic substrate properties of fibrosis in ESUS and AFib are indistinguishable. This suggests that some ESUS patients have latent pre-clinical fibrotic substrate that could be a future source of arrhythmogenicity. Thus, our work prompts the hypothesis that ESUS patients with fibrotic atria are spared from AFib due to an absence of arrhythmia triggers.


The heart usually beats with a regular rhythm to pump the blood that carries oxygen and nutrients to different organs. Sometimes, alterations in the heart's rhythm known as arrhythmias can occur. Atrial fibrillation, also called AFib, is a type of arrhythmia in which the heart beats rapidly and irregularly, causing abnormal blood-flow that can lead to the formation of blood clots. If one of these blood clots travels to the brain, it can block a blood vessel, causing a stroke. However, many strokes occur without any evidence of AFib. One subset of strokes that are not associated with AFib are embolic strokes of undetermined source (ESUS), which account for 25% of all strokes. By definition ESUS and AFib do not occur together, but both are associated with similar elevated levels of disease-related remodeling (i.e., fibrosis) in the heart tissue, which appears when the heart is injured. Fibrosis impairs the heart's normal electrical activity. Bifulco et al. wanted to determine whether there is some fundamental difference in fibrosis between people with AFib and those who have had an ESUS event. To do this, they used a computational approach to model the geometries and patterns of fibrosis of the hearts of 45 ESUS patients and 45 patients with AFib, essentially producing a virtual version of each patient's heart. Bifulco et al. then applied a virtual pace-maker (working in overdrive mode) to each heart model to determine whether electrical inputs that can lead to AFib had different effects on ESUS and AFib patients. The results showed that the electrical inputs had similar effects in all of the heart models. This led Bifulco et al. to conclude that ESUS and AFib patients have indistinguishable patterns of fibrosis. The key difference is that ESUS patients are missing the trigger to initiate the fibrillation process ­ if atrial fibrosis is the proverbial tinderbox, these triggers are the spark needed to ignite a fire. Further research, including confirmation of Bifulco et al.'s findings in live patients, will be needed to confirm the hypothesis that ESUS patients lack AFib primarily due to an absence of triggers. If this is indeed the case, these findings may make it easier to identify ESUS patients at higher risk for AFib or further strokes. Additionally, a better understanding of fibrosis as a link between stroke and AFib will help clinicians provide better, more personalized treatments, for example guiding whether a patient should take blood thinners or undergo more rigorous cardiac monitoring.


Subject(s)
Atrial Fibrillation/complications , Computer Simulation/statistics & numerical data , Embolic Stroke/diagnosis , Aged , Atrial Fibrillation/etiology , Embolic Stroke/etiology , Female , Fibrosis/complications , Fibrosis/diagnostic imaging , Heart Atria/diagnostic imaging , Heart Atria/pathology , Humans , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/statistics & numerical data , Male , Middle Aged
17.
Front Physiol ; 12: 646023, 2021.
Article in English | MEDLINE | ID: mdl-33716795

ABSTRACT

BACKGROUND: Electroanatomic mapping systems are used to support electrophysiology research. Data exported from these systems is stored in proprietary formats which are challenging to access and storage-space inefficient. No previous work has made available an open-source platform for parsing and interrogating this data in a standardized format. We therefore sought to develop a standardized, open-source data structure and associated computer code to store electroanatomic mapping data in a space-efficient and easily accessible manner. METHODS: A data structure was defined capturing the available anatomic and electrical data. OpenEP, implemented in MATLAB, was developed to parse and interrogate this data. Functions are provided for analysis of chamber geometry, activation mapping, conduction velocity mapping, voltage mapping, ablation sites, and electrograms as well as visualization and input/output functions. Performance benchmarking for data import and storage was performed. Data import and analysis validation was performed for chamber geometry, activation mapping, voltage mapping and ablation representation. Finally, systematic analysis of electrophysiology literature was performed to determine the suitability of OpenEP for contemporary electrophysiology research. RESULTS: The average time to parse clinical datasets was 400 ± 162 s per patient. OpenEP data was two orders of magnitude smaller than compressed clinical data (OpenEP: 20.5 ± 8.7 Mb, vs clinical: 1.46 ± 0.77 Gb). OpenEP-derived geometry metrics were correlated with the same clinical metrics (Area: R 2 = 0.7726, P < 0.0001; Volume: R 2 = 0.5179, P < 0.0001). Investigating the cause of systematic bias in these correlations revealed OpenEP to outperform the clinical platform in recovering accurate values. Both activation and voltage mapping data created with OpenEP were correlated with clinical values (mean voltage R 2 = 0.8708, P < 0.001; local activation time R 2 = 0.8892, P < 0.0001). OpenEP provides the processing necessary for 87 of 92 qualitatively assessed analysis techniques (95%) and 119 of 136 quantitatively assessed analysis techniques (88%) in a contemporary cohort of mapping studies. CONCLUSIONS: We present the OpenEP framework for evaluating electroanatomic mapping data. OpenEP provides the core functionality necessary to conduct electroanatomic mapping research. We demonstrate that OpenEP is both space-efficient and accurately representative of the original data. We show that OpenEP captures the majority of data required for contemporary electroanatomic mapping-based electrophysiology research and propose a roadmap for future development.

18.
Funct Imaging Model Heart ; 12738: 71-83, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35727914

ABSTRACT

Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172mm ASD, 5.882 ± 1.524mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144mm ASD, 5.096 ± 1.246mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051mm ASD, 2.739 ± 0.843mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.

19.
Ann Biomed Eng ; 49(1): 233-250, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32458222

ABSTRACT

Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies. We extended an atrial coordinate system to map the pulmonary veins, vena cava and appendages to standardised positions in the coordinate system corresponding to the average location across the anatomies. We then expressed each fibre field in this atrial coordinate system and calculated an average fibre field. To assess the effects of fibre field on patient-specific modelling predictions, we calculated paced activation time maps and electrical driver locations during AF. In total, 756 activation time maps were calculated (7 anatomies with 9 fibre maps and 2 pacing locations, for the endocardial, epicardial and bilayer surface models of the LA and RA). Patient-specific fibre fields had a relatively small effect on average paced activation maps (range of mean local activation time difference for LA fields: 2.67-3.60 ms, and for RA fields: 2.29-3.44 ms), but had a larger effect on maximum LAT differences (range for LA 12.7-16.6%; range for RA 11.9-15.0%). A total of 126 phase singularity density maps were calculated (7 anatomies with 9 fibre maps for the LA and RA bilayer models). The fibre field corresponding to anatomy 1 had the highest median PS density map correlation coefficient for LA bilayer simulations (0.44 compared to the other correlations, ranging from 0.14 to 0.39), while the average fibre field had the highest correlation for the RA bilayer simulations (0.61 compared to the other correlations, ranging from 0.37 to 0.56). For sinus rhythm simulations, average activation time is robust to fibre field direction; however, maximum differences can still be significant. Patient specific fibres are more important for arrhythmia simulations, particularly in the left atrium. We propose using the fibre field corresponding to DTMRI dataset 1 for LA simulations, and the average fibre field for RA simulations as these optimally predicted arrhythmia properties.


Subject(s)
Atlases as Topic , Atrial Function , Heart Atria/anatomy & histology , Patient-Specific Modeling , Anisotropy , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/physiopathology , Diffusion Magnetic Resonance Imaging , Heart Atria/diagnostic imaging , Humans
20.
Cardiovasc Res ; 117(4): 1078-1090, 2021 03 21.
Article in English | MEDLINE | ID: mdl-32402067

ABSTRACT

AIMS: Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. METHODS AND RESULTS: Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. CONCLUSION: The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.


Subject(s)
Action Potentials , Gap Junctions/pathology , Heart Ventricles/pathology , Ventricular Fibrillation/pathology , Animals , Disease Models, Animal , Electrocardiography , Fibrosis , Heart Rate , Heart Ventricles/physiopathology , Isolated Heart Preparation , Models, Cardiovascular , Rats, Sprague-Dawley , Time Factors , Ventricular Fibrillation/physiopathology , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...