Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391609

ABSTRACT

Single-view cone-beam X-ray luminescence computed tomography (CB-XLCT) has recently gained attention as a highly promising imaging technique that allows for the efficient and rapid three-dimensional visualization of nanophosphor (NP) distributions in small animals. However, the reconstruction performance is hindered by the ill-posed nature of the inverse problem and the effects of depth variation as only a single view is acquired. To tackle this issue, we present a methodology that integrates an automated restarting strategy with depth compensation to achieve reconstruction. The present study employs a fast proximal gradient descent (FPGD) method, incorporating L0 norm regularization, to achieve efficient reconstruction with accelerated convergence. The proposed approach offers the benefit of retrieving neighboring multitarget distributions without the need for CT priors. Additionally, the automated restarting strategy ensures reliable reconstructions without the need for manual intervention. Numerical simulations and physical phantom experiments were conducted using a custom CB-XLCT system to demonstrate the accuracy of the proposed method in resolving adjacent NPs. The results showed that this method had the lowest relative error compared to other few-view techniques. This study signifies a significant progression in the development of practical single-view CB-XLCT for high-resolution 3-D biomedical imaging.

2.
Comput Methods Programs Biomed ; 229: 107265, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455470

ABSTRACT

BACKGROUND AND OBJECTIVE: As an emerging dual-mode optical molecular imaging, cone-beam X-ray luminescence computed tomography (CB-XLCT) has shown potential in early tumor diagnosis and other applications with increased depth and little autofluorescence. However, due to the low transfer efficiency of PNPs to convert X-ray energy to visible or near-infrared (NIR) light and X-ray dose limitation, the signal to noise ratio of projections is quite low, making the quality of CB-XLCT relatively poor. METHODS: To improve the reconstruction quality of low-counts CB-XLCT imaging, an adaptive reconstruction algorithm (named ADFISTA-MLEM) based on the maximum likelihood expectation estimation (MLEM) framework is proposed for CB-XLCT reconstruction from Poisson distributed projections. In the proposed framework, the image reconstructed by fast iterative shrinkage-thresholding algorithm (FISTA) is used as the initial image for MLEM iterations to improve reconstruction accuracy, in which both the projection noise model and the sparsity constraint of the image could be considered. For relative quantitative imaging, a specific normalization is applied to the projection data and system matrix. To determine the hyperparameter of FISTA, which may be different for different projections, an adaptive strategy (ADFISTA) is then designed for adaptive update of the hyperparameter with reconstructed image in each iteration. RESULTS AND CONCLUSIONS: Results from numerical simulations and phantom experiments indicate that the proposed framework can obtain superior reconstruction accuracy in terms of contrast to noise ratio and shape similarity. In addition, high intensity-concentration linearity between different probe targets indicates its potential for quantitative CB-XLCT imaging.


Subject(s)
Image Processing, Computer-Assisted , Luminescence , X-Rays , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Algorithms
3.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Article in English | MEDLINE | ID: mdl-31970943

ABSTRACT

Significance: As a promising hybrid imaging technique with x-ray excitable nanophosphors, cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed for in-depth biological imaging applications. In situations in which the full rotation of the imaging object (or x-ray source) is inapplicable, the x-ray excitation is limited by geometry, or a lower x-ray excitation dose is mandatory, limited view CB-XLCT reconstruction would be essential. However, this will result in severe ill-posedness and poor image quality.

Aim: The aim is to develop a limited view CB-XLCT imaging strategy to reduce the scanning span and a corresponding reconstruction method to achieve robust imaging performance.

Approach: In this study, a group sparsity-based reconstruction method is proposed with the consideration that nanophosphors usually cluster in certain regions, such as tumors or major organs such as the liver. In addition, depth compensation (DC) is adopted to avoid the depth inconsistency caused by a limited view strategy.

Results: Experiments using numerical simulations and physical phantoms with different edge-to-edge distances were carried out to illustrate the validity of the proposed method. The reconstruction results showed that the proposed method outperforms conventional methods in terms of localization accuracy, target shape, image contrast, and spatial resolution with two perpendicular projections.

Conclusions: A limited view CB-XLCT imaging strategy with two perpendicular projections and a reconstruction method based on DC and group sparsity, which is essential for fast CB-XLCT imaging and for some practical imaging applications, such as imaging-guided surgery, is proposed.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Surgery, Computer-Assisted , Tomography, X-Ray Computed/methods , Algorithms , Cone-Beam Computed Tomography/instrumentation , Diagnostic Tests, Routine , Humans , Luminescence
4.
Bioconjug Chem ; 30(8): 2191-2200, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31344330

ABSTRACT

X-ray excited photodynamic therapy (X-PDT), which utilizes X-rays as the energy source and X-ray luminescent nanoparticles (XLNPs) as the transducer to excite photosensitizers (PS), resolves the penetration problem of light in traditional PDT to enable the treatment of deep-seated tumors. Nevertheless, the high X-ray dosage used in X-PDT hampers its potential applications in clinics. In this study, to alleviate the dose problem, ß-NaLuF4:Tb3+ spherical nanoparticles (NPs) with ultrastrong green X-ray excited optical luminescence (XEOL) due to the less nonradiative relaxation probability and high X-ray absorption mass coefficient, which perfectly matches the absorption spectrum of a photosensitizer named rose bengal (RB), were synthesized and employed as the energy transducer for X-PDT. After covalent conjugation of NPs with RB, high Förster resonant energy transfer (FRET) efficiency up to 94.29% was achieved, leading to high production of singlet oxygen. In vivo X-PDT efficacy was evaluated by nude mice with a HepG2 tumor xenograft. With excellent biocompatibility, the synthesized NPs-RB nanocomposite showed significant antitumor efficiency up to 80 ± 12.3% with a total X-ray dose of only 0.19 Gy, demonstrating the feasibility of low-dose X-PDT in vivo for the first time. The present work provides a promising platform for X-PDT in deep-seated tumors.


Subject(s)
Nanocomposites/chemistry , Nanoparticles/chemistry , Neoplasms/therapy , Photochemotherapy/methods , Photosensitizing Agents/radiation effects , X-Rays , Animals , Cell Line, Tumor , Hep G2 Cells , Heterografts , Humans , Mice , Nanoparticles/therapeutic use , Rose Bengal
5.
IEEE Trans Med Imaging ; 38(12): 2891-2902, 2019 12.
Article in English | MEDLINE | ID: mdl-31095480

ABSTRACT

Cone beam X-ray luminescence computed tomography (CB-XLCT) is a promising imaging technique in studying the physiological and pathological processes in small animals. However, the dynamic bio-distributions of probes in small animal, especially in adjacent targets are still hard to be captured directly from dynamic CB-XLCT. In this paper, a 4D temporal-spatial reconstruction method based on principal component analysis (PCA) in the projection space is proposed for dynamic CB-XLCT. First, projections of angles in each 3D frame are compressed to reduce the noises initially. Then a temporal PCA is performed on the projection data to decorrelate the 4D problem into separate 3D problems in the PCA domain. In the PCA domain, the difference between dynamic behaviors of multiple targets can be reflected by the first several principal components which can be further used for fast and improved reconstruction by a restarted Tikhonov regularization method. At last, by discarding the principal components mainly reflecting noise, the concentration series of targets are recovered from the first few reconstruction results with a mask as the constraint. The numerical simulation and phantom experiment demonstrate that the proposed method can resolve multiple targets and recover the dynamic distributions with high computation efficiency. The proposed method provides new feasibility for imaging dynamic bio-distributions of probes in vivo.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Animals , Feasibility Studies , Mice , Phantoms, Imaging , Principal Component Analysis
6.
Biomed Opt Express ; 10(1): 1-17, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30775079

ABSTRACT

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Owing to the high degree of absorption and scattering of light through tissues, the CB-XLCT inverse problem is inherently ill-conditioned. Appropriate priors or regularizations are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, the goal of CB-XLCT reconstruction is to get the distributions of nanophosphors in the imaging object. Considering that the distributions of nanophosphors inside bodies preferentially accumulate in specific areas of interest, the reconstruction of XLCT images is usually sparse with some locally smoothed high-intensity regions. Therefore, a combination of the L1 and total variation regularization is designed to improve the imaging quality of CB-XLCT in this study. The L1 regularization is used for enforcing the sparsity of the reconstructed images and the total variation regularization is used for maintaining the local smoothness of the reconstructed image. The implementation of this method can be divided into two parts. First, the reconstruction image was reconstructed based on the fast iterative shrinkage-thresholding (FISTA) algorithm, then the reconstruction image was minimized by the gradient descent method. Numerical simulations and phantom experiments indicate that compared with the traditional ART, ADAPTIK and FISTA methods, the proposed method demonstrates its advantage in improving spatial resolution and reducing imaging time.

7.
Biomed Opt Express ; 9(6): 2844-2858, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30258694

ABSTRACT

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has become a promising technique for its higher utilization of X-ray and shorter scanning time compared to the narrow-beam XLCT, but it suffers from the low-spatial resolution that results in the insufficiency to resolve the adjacent multiple probes. In multispectral CB-XLCT, multiple probes show different emission behaviors in the dimension of the spectrum. In this work, a spectral-resolved CB-XLCT method combining multispectral CB-XLCT with principle component analysis (PCA) was proposed to improve the imaging resolution. Results of digital simulation and the phantom experiment illustrated that the proposed method was capable of resolving adjacent multiple probes accurately and had better performance than the common multispectral CB-XLCT with spectrum information priori.

8.
Opt Express ; 26(18): 23233-23250, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184978

ABSTRACT

Cone beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising hybrid imaging technique. Though it has the advantage of fast imaging, the inverse problem of CB-XLCT is seriously ill-conditioned, making the image quality quite poor, especially for imaging multi-targets. To achieve fast imaging of multi-targets, which is essential for in vivo applications, a truncated singular value decomposition (TSVD) based sparse view CB-XLCT reconstruction method is proposed in this study. With the weight matrix of the CB-XLCT system being converted to orthogonal by TSVD, the compressed sensing (CS) based L1-norm method could be applied for fast reconstruction from fewer projection views. Numerical simulations and phantom experiments demonstrate that by using the proposed method, two targets with different edge-to-edge distances (EEDs) could be resolved effectively. It indicates that the proposed method could improve the imaging quality of multi-targets significantly in terms of localization accuracy, target shape, image contrast, and spatial resolution, when compared with conventional methods.

9.
J Biomed Opt ; 23(2): 1-11, 2018 02.
Article in English | MEDLINE | ID: mdl-29473348

ABSTRACT

With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Absorption, Physicochemical , Algorithms , Computer Simulation , Phantoms, Imaging
10.
Biomed Opt Express ; 8(9): 3952-3965, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29026681

ABSTRACT

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a new molecular imaging modality recently. It can obtain both anatomical and functional tomographic images of an object efficiently, with the excitation of nanophosphors in vivo or in vitro by cone-beam X-rays. However, the ill-posedness of the CB-XLCT inverse problem degrades the image quality and makes it difficult to resolve adjacent luminescent targets with different concentrations, which is essential in the monitoring of nanoparticle metabolism and drug delivery. To address this problem, a multi-voltage excitation imaging scheme combined with principal component analysis is proposed in this study. Imaging experiments performed on physical phantoms by a custom-made CB-XLCT system demonstrate that two adjacent targets, with different concentrations and an edge-to-edge distance of 0 mm, can be effectively resolved.

11.
IEEE Trans Med Imaging ; 36(12): 2510-2523, 2017 12.
Article in English | MEDLINE | ID: mdl-28961108

ABSTRACT

The valuable structure features in full-dose computed tomography (FdCT) scans can be exploited as prior knowledge for low-dose CT (LdCT) imaging. However, lacking the capability to represent local characteristics of interested structures of the LdCT image adaptively may result in poor preservation of details/textures in LdCT image. This paper aims to explore a novel prior knowledge retrieval and representation paradigm, called adaptive prior features assisted restoration algorithm, for the purpose of better restoration of the low-dose lung CT images by capturing local features from FdCT scans adaptively. The innovation lies in the construction of an offline training database and the online patch-search scheme integrated with the principal components analysis (PCA). Specifically, the offline training database is composed of 3-D patch samples extracted from existing full-dose lung scans. For online patch-search, 3-D patches with structure similar to the noisy target patch are first selected from the database as the training samples. Then, PCA is applied on the training samples to retrieve their local prior principal features adaptively. By employing the principal features to decompose the noisy target patch and using an adaptive coefficient shrinkage technique for inverse transformation, the noise of the target patch can be efficiently removed and the detailed texture can be well preserved. The effectiveness of the proposed algorithm was validated by CT scans of patients with lung cancer. The results show that it can achieve a noticeable gain over some state-of-the-art methods in terms of noise suppression and details/textures preservation.


Subject(s)
Databases, Factual , Lung/diagnostic imaging , Machine Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Imaging, Three-Dimensional , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging , Principal Component Analysis , Radiation Dosage
12.
Med Phys ; 44(9): e230-e241, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28901609

ABSTRACT

PURPOSE: Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images. METHODS: Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering. RESULTS: The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation. CONCLUSIONS: With the use of PCA on local neighborhoods to extract principal structural components, as well as adaptive NLM filtering on PCs of the target patch using filtering parameter estimated based on the local noise level and corresponding SNR, the proposed PC-NLM method shows its efficacy in preserving fine anatomical structures and suppressing noise/artifacts in LDCT images.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Algorithms , Artifacts , Humans , Principal Component Analysis , Signal-To-Noise Ratio
13.
J Xray Sci Technol ; 20(3): 351-62, 2012.
Article in English | MEDLINE | ID: mdl-22948356

ABSTRACT

A mathematical derivation was conducted to illustrate that exact 3D image reconstruction could be achieved for z-homogeneous phantoms from data acquired with 2D general trajectories using the back projection filtration (BPF) algorithm. The conclusion was verified by computer simulation and experimental result with a circular scanning trajectory. Furthermore, the effect of the non-uniform degree along z-axis of the phantoms on the accuracy of the 3D reconstruction by BPF algorithm was investigated by numerical simulation with a gradual-phantom and a disk-phantom. The preliminary result showed that the performance of BPF algorithm improved with the z-axis homogeneity of the scanned object.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Computer Simulation , Cone-Beam Computed Tomography/instrumentation , Image Processing, Computer-Assisted , Phantoms, Imaging
14.
IEEE Trans Inf Technol Biomed ; 15(4): 655-60, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21659036

ABSTRACT

Micro-CT with a high spatial resolution in combination with computer-based-reconstruction techniques is considered a powerful tool for morphological study of insects. The quality of CT images crucially depends on the precise knowledge of the scan geometry of the micro-CT system. In this paper, we have proposed a method to calculate the deviation of rotating axis for compensating deficiency of existing methods. A practical application of this geometric calibration method of the micro-CT system for insect imaging is presented. We have performed the computer-simulation study and experimental study with our prototype micro-CT system. The results demonstrate that the proposed technique is accurate and robust. In addition, we have evaluated the imaging characteristics of the detector in terms of modulation-transfer function (MTF). Finally, insect imaging performance and image reconstruction from data acquired with different energies are presented.


Subject(s)
Image Processing, Computer-Assisted/methods , Insecta/anatomy & histology , X-Ray Microtomography/standards , Algorithms , Animals , Calibration , Phantoms, Imaging , X-Ray Microtomography/instrumentation , X-Ray Microtomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...