Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
iScience ; 26(11): 108119, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965144

ABSTRACT

Patients with OA and varus knees are subject to abnormal mechanical environment and objective of this study was to investigate the molecular mechanisms underlying chondrocyte senescence caused by mechanical overloading and the role of Zmpste24-mediated nuclear membrane instability in varus knees. Finite element analysis showed that anteromedial region of tibial plateau experienced the most mechanical stress in an osteoarthritis patient with a varus knee. Immunohistochemistry exhibited lower Zmpste24 expression and higher expression of senescence marker p21 in the anteromedial region. Animal experiments and cell-stretch models also demonstrated an inverse relationship between Zmpste24 and mechanically induced senescence. Zmpste24 overexpression rescued cartilage degeneration and senescence in vitro by scavenging ROS. In conclusion, anteromedial tibial plateau is exposed to abnormal stress in varus knees, downregulation of Zmpste24, and nuclear membrane stability may explain increased senescence in this region. Zmpste24 and nuclear membrane stability are potential targets for treating osteoarthritis caused by abnormal alignment.

2.
Biomed Pharmacother ; 165: 115252, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536034

ABSTRACT

Intervertebral disc degeneration (IVDD) leads to a series of degenerative spine diseases. Clinical treatment of IVDD is mainly surgery, lacking effective drugs to alleviate intervertebral disc degeneration. In this study, we analysed the mRNA sequencing dataset of human degenerative intervertebral disc tissues and revealed the participation of ferroptosis in IVDD. Furthermore, we confirmed that TNF-α, an important cytokine in IVDD, induces ferroptosis in nucleus pulposus cells. Subsequently, a ferroptosis inhibitors screening strategy using multiple ferroptosis indicators was developed. Through the screen of various natural compounds, cynarin, a natural product enriched in Artichoke, was discovered to inhibit ferroptosis of nucleus pulposus cells. Cynarin can dose-dependently inhibit the catabolism of nucleus pulposus cells, increase the expression of key ferroptosis-inhibiting genes (GPX4 and NRF2), inhibit the increment of cellular Fe2+, lipid peroxides, and reactive oxygen species. It can also prevent mitochondria shrinkage, reduce mitochondria cristae density in ferroptosis, and prevent IVDD in the rat model. In conclusion, cynarin is a potential candidate for the drug development for IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Rats , Humans , Animals , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Cinnamates/pharmacology , Intervertebral Disc/metabolism
3.
Nat Commun ; 14(1): 4048, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422472

ABSTRACT

Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Humans , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Hypophosphatasia/genetics , Hypophosphatasia/metabolism , Hypophosphatasia/pathology , Cryoelectron Microscopy , Bone and Bones/metabolism , Osteoblasts/metabolism
4.
Adv Sci (Weinh) ; 10(14): e2204438, 2023 05.
Article in English | MEDLINE | ID: mdl-36965071

ABSTRACT

Chemoresistance is the main obstacle in osteosarcoma (OS) treatment; however, the underlying mechanism remains unclear. In this study, it is discovered that DDRGK domain-containing protein 1 (DDRGK1) plays a fundamental role in chemoresistance induced in OS. Bioinformatic and tissue analyses indicate that higher expression of DDRGK1 correlates with advanced tumor stage and poor clinical prognosis of OS. Quantitative proteomic analyses suggest that DDRGK1 plays a critical role in mitochondrial oxidative phosphorylation. DDRGK1 knockout trigger the accumulation of reactive oxygen species (ROS) and attenuate the stability of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element. Furthermore, DDRGK1 inhibits ubiquitin-proteasome-mediated degradation of NRF2 via competitive binding to the Kelch-like ECH-associated protein 1 (KEAP1) protein, which recruits NRF2 to CULLIN(CUL3). DDRGK1 knockout attenuates NRF2 stability, contributing to ROS accumulation, which promotes apoptosis and enhanced chemosensitivity to doxorubicin (DOX) and etoposide in cancer cells. Indeed, DDRGK1 knockout significantly enhances osteosarcoma chemosensitivity to DOX in vivo. The combination of DDRGK1 knockdown and DOX treatment provides a promising new avenue for the effective treatment of OS.


Subject(s)
NF-E2-Related Factor 2 , Osteosarcoma , Humans , Drug Resistance, Neoplasm , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Osteosarcoma/drug therapy , Proteomics , Reactive Oxygen Species/metabolism , Ubiquitination
5.
Adv Sci (Weinh) ; 10(13): e2207216, 2023 05.
Article in English | MEDLINE | ID: mdl-36951540

ABSTRACT

Intervertebral disc degeneration (IVDD)-induced lower back pain (LBP) is a common problem worldwide. The underlying mechanism is partially accredited to ferroptosis, based on sequencing analyses of IVDD patients from the gene expression omnibus (GEO) databases. In this study, it is shown that polydopamine nanoparticles (PDA NPs) inhibit oxidative stress-induced ferroptosis in nucleus pulposus (NP) cells in vitro. PDA NPs scavenge reactive oxygen species (ROS), chelate Fe2+ to mitigate iron overload, and regulate the expression of iron storage proteins such as ferritin heavy chain (FHC), ferritin, and transferrin receptor (TFR). More importantly, PDA NPs co-localize with glutathione peroxidase 4 (GPX4) around the mitochondria and suppress ubiquitin-mediated degradation, which in turn exerts a protective function via the transformation and clearance of phospholipid hydroperoxides. PDA NPs further down-regulate malondialdehyde (MDA) and lipid peroxide (LPO) production; thus, antagonizing ferroptosis in NP cells. Moreover, PDA NPs effectively rescue puncture-induced degeneration in vivo by targeting ferroptosis and inhibiting GPX4 ubiquitination, resulting in the upregulation of antioxidant pathways. The findings offer a new tool to explore the underlying mechanisms and a novel treatment strategy for IVDD-induced LBP.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Intervertebral Disc Degeneration/metabolism , Iron/metabolism , Ubiquitination
6.
J Transl Med ; 20(1): 549, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435786

ABSTRACT

BACKGROUND: The COVID-19 pandemic has become a huge threat to human health, infecting millions of people worldwide and causing enormous economic losses. Many novel small molecule drugs have been developed to treat patients with COVID-19, including Paxlovid, which block the synthesis of virus-related proteins and replication of viral RNA, respectively. Despite satisfactory clinical trial results, attention is now being paid to the long-term side effects of these antiviral drugs on the musculoskeletal system. To date, no study has reported the possible side effects, such as osteoarthritis, of Paxlovid. This study explored the effects of antiviral drug, Paxlovid, on chondrocyte proliferation and differentiation. METHODS: In this study, both in vitro and in vivo studies were performed to determine the effect of Paxlovid on chondrocyte degeneration and senescence. Furthermore, we explored the possible mechanism behind Paxlovid-induced acceleration of cartilage degeneration using transcriptome sequencing and related inhibitors were adopted to verify the downstream pathways behind such phenomenon. RESULTS: Paxlovid significantly inhibited chondrocyte extracellular matrix protein secretion. Additionally, Paxlovid significantly induced endoplasmic reticulum stress, oxidative stress, and downstream ferroptosis, thus accelerating the senescence and degeneration of chondrocytes. In vivo experiments showed that intraperitoneal injection of Paxlovid for 1 week exacerbated cartilage abrasion and accelerated the development of osteoarthritis in a mouse model. CONCLUSIONS: Paxlovid accelerated cartilage degeneration and osteoarthritis development, potentially by inducing endoplasmic reticulum stress and oxidative stress. Long-term follow-up is needed with special attention to the occurrence and development of osteoarthritis in patients treated with Paxlovid.


Subject(s)
COVID-19 , Osteoarthritis , Animals , Mice , Humans , Endoplasmic Reticulum Stress , Pandemics , Oxidation-Reduction , Homeostasis , Osteoarthritis/drug therapy , Antiviral Agents
7.
Front Pharmacol ; 13: 940475, 2022.
Article in English | MEDLINE | ID: mdl-36408239

ABSTRACT

Intervertebral disc degeneration (IDD) is the main cause of low back pain. An increasing number of studies have suggested that inflammatory response or the senescence of nucleus pulposus (NP) cells is strongly associated with the progress of IDD. Eupatilin, the main flavonoid extracted from Artemisia, was reported to be associated with the inhibition of the intracellular inflammatory response and the senescence of cells. However, the relationship between eupatilin and IDD is still unknown. In this study, we explored the role of eupatilin in tumor necrosis factor-α (TNF-α)-induced activation of inflammatory signaling pathways and NP cell senescence, in the anabolism and catabolism of NP cell extracellular matrix (ECM) and in the effect of the puncture-induced model of caudal IDD in the rat. In vitro, eupatilin significantly inhibited TNF-α-induced ECM degradation, downregulated the expression of related markers of NP cells (MMP3, MMP9, and MMP13), and upregulated the expression of SOX9 and COL2A1. Furthermore, eupatilin reduced TNF-α-induced cell senescence by inhibiting the expression of the senescence of NP cell-related markers (p21 and p53). Mechanistically, ECM degradation and cell senescence were reduced by eupatilin, which inhibited the activation of MAPK/NF-κB signaling pathways. Consistent with the in vitro data, eupatilin administration ameliorated the puncture-induced model of caudal IDD in the rat. In conclusion, eupatilin can inhibit the inflammatory response and the senescence of NP cells, which may be a novel treatment strategy for IDD.

8.
Front Endocrinol (Lausanne) ; 13: 939959, 2022.
Article in English | MEDLINE | ID: mdl-36425467

ABSTRACT

Background: Ceritinib is used for the treatment of patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), who are at the risk of developing bone metastasis. During bone metastasis, tumor cells release factors that induce osteoclast formation, resulting in osteolysis. However, the effect of ceritinib on osteoclast formation remains unclear. Methods: Osteoclastogenesis was induced to assess the effect of ceritinib on osteoclast formation and osteoclast-specific gene expression. Western blotting was used to examine the molecular mechanisms underlying the effect of ceritinib on osteoclast differentiation. An in vivo ovariectomized mouse model was established to validate the effect of ceritinib in suppressing osteoclast formation and preventing bone loss. Results: The differentiation of osteoclasts and the expression of osteoclast-specific genes were inhibited upon ceritinib stimulation. Ceritinib suppressed Akt and p65 phosphorylation during the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The administration of ceritinib to ovariectomized mice ameliorated trabecular bone loss by inhibiting osteoclast formation. Conclusions: Ceritinib is beneficial in preventing bone loss by suppressing osteoclastic Akt and nuclear factor κB (NF-κB) signaling.


Subject(s)
Bone Diseases, Metabolic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Osteoclasts/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/pathology , Bone Diseases, Metabolic/pathology
9.
J Inflamm Res ; 15: 5767-5783, 2022.
Article in English | MEDLINE | ID: mdl-36238766

ABSTRACT

Purpose: Low back pain (LBP) induced by intervertebral disc degeneration (IDD) brings progressively painful status and impairs the normal daily living. Engeletin is a plant-derived medicine with anti-inflammation and antioxidant functions. Therefore, we aim to confirm its protective effects against the intervertebral disc degeneration in vivo and in vitro. Methods: The cytotoxicity of engeletin was validated by CCK-8 tests. Using the TNF-α to simulate the inflammation status in vitro, the expression of inflammatory mediators and MMP families were determined by qPCR, Western blotting and confocal microscopy. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. The expression of apoptosis-related proteins was tested by Western blotting. The activation of NF-κB and MAPK pathways was evaluated by Western blotting and confocal microscopy. In vivo, percutaneous needle puncture was used to establish the IDD model in rat, and engeletin was administrated via intradiscal injection. The therapeutic effects of engeletin were detected through imaging and histology analysis. Results: Cell viability tests demonstrated there was little cytotoxicity of engeletin toward NP cells. Pretreatment with engeletin effectively ameliorate the TNF-α-induced up-regulation of inflammatory mediators and MMP families, promoting the anabolism of ECM meanwhile. Cell apoptosis was also attenuated with the addition of engeletin. We found that the activation of MAPK and NF-κB signaling pathways and the nuclear translocation of phosphorylated p65 and p38 were inhibited prominently with the treatment of engeletin which may be the potential molecular mechanism for its anti-inflammation effects. Finally, the IDD induced by percutaneous needle puncture was partially alleviated with the injection of engeletin in vivo. Conclusion: As a natural compound with little cytotoxicity, engeletin possesses the outstanding anti-inflammation and anti-apoptosis effects in the process of IDD in vitro and in vivo, which may be a promising medicine for the prevention and treatment of IDD-related low back pain.

10.
Biomed Pharmacother ; 155: 113781, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271561

ABSTRACT

Osteoarthritis (OA), a chronic degenerative disease, is a major cause of pain, disability, and reduced quality of life among the elderly worldwide. The key to treating it is early prevention and effective intervention. The anti-inflammatory effects of scutellarin (SCU), a flavonoid derived from Erigeron breviscapus, have been increasingly reported. However, the mechanism by which SCU affects OA remains unclear. This study aimed to investigate the therapeutic effects and potential molecular mechanisms of SCU in the development of OA. Here, we found that SCU inhibited interleukin (IL)- 1ß-induced degradation of the extracellular matrix (ECM) of cartilage through the NF-kappaB/mitogen-activated protein kinases (NF-κB/MAPK) signaling pathway. In addition, in vivo data showed that SCU significantly reduced cartilage damage in the destabilization of the medial meniscus (DMM) mouse model and ovariectomy (OVX)-induced subchondral bone loss and cartilage degeneration in mice. In summary, our data showed that SCU is expected to become a potentially effective candidate treatment strategy for OA.


Subject(s)
Chondrocytes , Osteoarthritis , Female , Mice , Animals , Chondrocytes/metabolism , NF-kappa B/metabolism , Mitogen-Activated Protein Kinases/metabolism , Quality of Life , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Signal Transduction , Interleukin-1beta/metabolism , Menisci, Tibial , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Mice, Inbred C57BL , Cells, Cultured
11.
Front Pharmacol ; 13: 980678, 2022.
Article in English | MEDLINE | ID: mdl-36249744

ABSTRACT

Osteoclasts undergo active metabolic reprogramming to acquire the energy needed during differentiation and bone resorption. Compared with immature osteoclasts, mature osteoclasts comprise higher levels of electron transport chain enzymes and more metabolically active mitochondria. Of all energy metabolism pathways, oxidative phosphorylation is considered to be the most efficient in supplying energy to osteoclasts. We found that the malate-aspartate shuttle inhibitor aminooxyacetic acid hemihydrochloride inhibits osteoclastogenesis and bone resorption by inhibiting exchange of reducing equivalents between the cytosol and the mitochondrial matrix and attenuating mitochondrial oxidative phosphorylation in vitro. The weakening of the oxidative phosphorylation pathway resulted in reduced mitochondrial function and inadequate energy supply along with reduced reactive oxygen species production. Furthermore, treatment with aminooxyacetic acid hemihydrochloride helped recover bone loss in ovariectomized mice. Our findings highlight the potential of interfering with the osteoclast intrinsic energy metabolism pathway as a treatment for osteoclast-mediated osteolytic diseases.

12.
Oxid Med Cell Longev ; 2022: 7548145, 2022.
Article in English | MEDLINE | ID: mdl-36187335

ABSTRACT

Intervertebral disc (IVD) degeneration (IVDD) is a characteristic of the dominating pathological processes of nucleus pulposus (NP) cell senescence, abnormal synthesis and irregular distribution of extracellular matrix (ECM), and tumor necrosis factor-α (TNF-α) induced inflammation. Nowadays, IVD acid environment variation which accelerates the pathological processes mentioned above arouses researchers' attention. KAN0438757 (KAN) is an effective inhibitor of selective metabolic kinase phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) that has both energy metabolism reprogramming and anti-inflammatory effects. Therefore, a potential therapeutic benefit of KAN lies in its ability to inhibit the development of IVDD. This study examined in vitro KAN toxicity in NP primary cells (NPPs). Moreover, KAN influenced tumor necrosis factor-α (TNF-α) induced ECM anabolism and catabolism; the inflammatory signaling pathway activation and the energy metabolism phenotype were also examined in NPPs. Furthermore, KAN's therapeutic effect was investigated in vivo using the rat tail disc puncture model. Phenotypically speaking, the KAN treatment partially rescued the ECM degradation and glycolysis energy metabolism phenotypes of NPPs induced by TNF-α. In terms of mechanism, KAN inhibited the activation of MAPK and NF-κB inflammatory signaling pathways induced by TNF-α and reprogramed the energy metabolism. For the therapeutic aspect, the rat tail disc puncture model demonstrated that KAN has a significant ameliorated effect on the progression of IVDD. To sum up, our research successfully authenticated the potential therapeutic effect of KAN on IVDD and declaimed its mechanisms of both novel energy metabolism reprogramming and conventional anti-inflammation effect.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Phosphofructokinase-2/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Energy Metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/pathology , NF-kappa B/metabolism , Nucleus Pulposus/pathology , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/pharmacology , Rats , Signal Transduction , Succinimides , Tumor Necrosis Factor-alpha/metabolism
13.
Front Bioeng Biotechnol ; 10: 872088, 2022.
Article in English | MEDLINE | ID: mdl-35464728

ABSTRACT

Surface modification of titanium has been a hot topic to promote bone integration between implants and bone tissue. Titanium dioxide nanotubes fabricated on the surface of titanium by anodic oxidation have been a mature scheme that has shown to promote osteogenesis in vitro. However, mechanisms behind such a phenomenon remain elusive. In this study, we verified the enhanced osteogenesis of BMSCs on nanotopographic titanium in vitro and proved its effect in vivo by constructing a bone defect model in rats. In addition, the role of the mechanosensitive molecule Yap is studied in this research by the application of the Yap inhibitor verteporfin and knockdown/overexpression of Yap in MC3T3-E1 cells. Piezo1 is a mechanosensitive ion channel discovered in recent years and found to be elemental in bone metabolism. In our study, we preliminarily figured out the regulatory relationship between Yap and Piezo1 and proved Piezo1 as a downstream effector of Yap and nanotube-stimulated osteogenesis. In conclusion, this research proved that nanotopography promoted osteogenesis by increasing nuclear localization of Yap and activating the expression of Piezo1 downstream.

14.
Plant Physiol Biochem ; 170: 160-170, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34891072

ABSTRACT

Abiotic stress is the main factor that severely limits crop growth and yield. NAC (NAM, ATAF1/2 and CUC2) transcription factors play an important role in dealing with various abiotic stresses. Here, we discovered the ZmSNAC13 gene in drought-tolerant maize lines by RNA-seq analysis and verified its function in Arabidopsis thaliana. First, its gene structure showed that ZmSNAC13 had a typical NAC domain and a highly variable C-terminal. There were multiple cis-acting elements related to stress in its promoter region. Overexpression of ZmSNAC13 resulted in enhanced tolerances to drought and salt stresses in Arabidopsis, characterized by a reduction in the water loss rate, a sustained effective photosynthesis rate, and increased cell membrane stability in leaves under drought conditions. Transcriptome analysis showed that a large number of differentially expressed genes regulated by overexpression of ZmSNAC13 were identified, and the main drought tolerance regulatory pathways involved were the ABA pathway and MAPK cascade signaling pathway. Overexpression of ZmSNAC13 promoted the expression of genes, such as PYL9 and DREB3, thereby enhancing tolerance to adverse environments. Adaptability, while restraining genes expression such as WRKY53 and MPK3, facilitates regulation of senescence in Arabidopsis and improves plant responses to adversity. Therefore, ZmSNAC13 is promising gene of interest for use in transgenic breeding to improve abiotic stress tolerance in crops.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/genetics , Zea mays/metabolism
15.
Stem Cell Res Ther ; 12(1): 605, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930462

ABSTRACT

BACKGROUND: Enhancer of zeste homolog 2 (EZH2) is a novel oncogene that can specifically trimethylate the histone H3 lysine 27 (H3K27me3) to transcriptionally inhibit the expression of downstream tumor-suppressing genes. As a small molecular inhibitor of EZH2, 3-Deazaneplanocin (DZNep) has been widely studied due to the role of tumor suppression. With the roles of epigenetic regulation of bone cells emerged in past decades, the property and molecular mechanism of DZNep on enhancing osteogenesis had been reported and attracted a great deal of attention recently. This study aims to elucidate the role of DZNep on EZH2-H3K27me3 axis and downstream factors during both osteoclasts and osteoblasts formation and the therapeutic possibility of DZNep on bone defect healing. METHODS: Bone marrow-derived macrophages (BMMs) cells were cultured, and their responsiveness to DZNep was evaluated by cell counting kit-8, TRAP staining assay, bone resorption assay, podosome actin belt. Bone marrow-derived mesenchymal stem cells (BMSC) were cultured and their responsiveness to DZNep was evaluated by cell counting kit-8, ALP and AR staining assay. The expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Wnt signaling pathway was determined by qPCR and western blotting. Mouse bone defect models were created, rescued by DZNep injection, and the effectiveness was evaluated by X-ray and micro-CT and histological staining. RESULTS: Consistent with the previous study that DZNep enhances osteogenesis via Wnt family member 1(Wnt1), Wnt6, and Wnt10a, our results showed that DZNep also promotes osteoblasts differentiation and mineralization through the EZH2-H3K27me3-Wnt4 axis. Furthermore, we identified that DZNep promoted the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation via facilitating the phosphorylation of IKKα/ß, IκB, and subsequently NF-κB nuclear translocation, which credit to the EZH2-H3K27me3-Foxc1 axis. More importantly, the enhanced osteogenesis and osteoclastogenesis result in accelerated mice bone defect healing in vivo. CONCLUSION: DZNep targeting EZH2-H3K27me3 axis facilitated the healing of mice bone defect via simultaneously enhancing osteoclastic bone resorption and promoting osteoblastic bone formation.


Subject(s)
Bone Resorption , Osteogenesis , Adenosine/analogs & derivatives , Animals , Bone Resorption/pathology , Cell Differentiation , Epigenesis, Genetic , Mice , NF-kappa B/metabolism , Osteoclasts , Osteogenesis/genetics , RANK Ligand/genetics , RANK Ligand/pharmacology
16.
Front Pharmacol ; 12: 652071, 2021.
Article in English | MEDLINE | ID: mdl-34122074

ABSTRACT

Osteolysis resulting from osteoclast overactivation is one of the severe complications of breast cancer metastasis to the bone. Previous studies reported that the anti-cancer agent DZNep induces cancer cell apoptosis by activating Akt signaling. However, the effect of DZNep on breast cancer bone metastasis is unknown. We previously found that DZNep enhances osteoclast differentiation by activating Akt. Therefore, we explored the use of the anti-cancer agent AZD3463 (an Akt inhibitor) along with DZNep, as AZD3463 can act as an anti-cancer agent and can also potentially ameliorate bone erosion. We evaluated osteoclast and breast cancer cell phenotypes and Akt signaling in vitro by treating cells with DZNep and AZD3463. Furthermore, we developed a breast cancer bone metastasis animal model in mouse tibiae to further determine their combined effects in vivo. Treatment of osteoclast precursor cells with DZNep alone increased osteoclast differentiation, bone resorption, and expression of osteoclast-specific genes. These effects were ameliorated by AZD3463. The combination of DZNep and AZD3463 inhibited breast cancer cell proliferation, colony formation, migration, and invasion. Finally, intraperitoneal injection of DZNep and AZD3463 ameliorated tumor progression and protected against bone loss. In summary, DZNep combined with AZD3463 prevented skeletal complications and inhibited breast cancer progression by suppressing Akt signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...