Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
2.
Atherosclerosis ; 392: 117526, 2024 May.
Article in English | MEDLINE | ID: mdl-38581738

ABSTRACT

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a novel concept proposed in 2020, which is more practical for identifying patients with fatty liver disease with high risk of disease progression. Fatty liver is a driver for extrahepatic complications, particularly cardiovascular diseases (CVD). Although the risk of CVD in MAFLD could be predicted by carotid ultrasound test, a very early stage prediction method before the formation of pathological damage is still lacking. METHODS: Stool microbiomes and plasma metabolites were compared across 196 well-characterized participants encompassing normal controls, simple MAFLD patients, MAFLD patients with carotid artery pathological changes, and MAFLD patients with diagnosed coronary artery disease (CAD). 16S rDNA sequencing data and untargeted metabolomic profiles were interrogatively analyzed using differential abundance analysis and random forest (RF) machine learning algorithm to identify discriminatory gut microbiomes and metabolomic. RESULTS: Characteristic microbial changes in MAFLD patients with CVD risk were represented by the increase of Clostridia and Firmicutes-to-Bacteroidetes ratios. Faecalibacterium was negatively correlated with mean-intima-media thickness (IMT), TC, and TG. Megamonas, Bacteroides, Parabacteroides, and Escherichia were positively correlated with the exacerbation of pathological indexes. MAFLD patients with CVD risk were characterized by the decrease of lithocholic acid taurine conjugate, and the increase of ethylvanillin propylene glycol acetal, both of which had close relationship with Ruminococcus and Gemmiger. Biotin l-sulfoxide had positive correlation with mean-IMT, TG, and weight. The general auxin pesticide beta-naphthoxyacetic acid and the food additive glucosyl steviol were both positively correlated with the increase of mean-IMT. The model combining the metabolite signatures with 9 clinical parameters accurately distinguished MAFLD with CVD risk in the proband and validation cohort. It was found that citral was the most important discriminative metabolite marker, which was validated by both in vitro and in vivo experiments. CONCLUSIONS: Simple MAFLD patients and MAFLD patients with CVD risk had divergent gut microbes and plasma metabolites. The predictive model based on metabolites and 9 clinical parameters could effectively discriminate MAFLD patients with CVD risk at a very early stage.


Subject(s)
Feces , Gastrointestinal Microbiome , Humans , Male , Female , Middle Aged , Feces/microbiology , Metabolomics/methods , Cardiovascular Diseases/blood , Biomarkers/blood , Risk Assessment , Case-Control Studies , Aged , Predictive Value of Tests , Bacteria , Heart Disease Risk Factors , Adult , Non-alcoholic Fatty Liver Disease/blood , Machine Learning , Carotid Intima-Media Thickness
3.
ACS Appl Mater Interfaces ; 16(17): 21722-21735, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629735

ABSTRACT

While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.


Subject(s)
Blood-Brain Barrier , Docetaxel , Drug Resistance, Neoplasm , Glioblastoma , Nanoparticles , Silicon Dioxide , Temozolomide , Temozolomide/chemistry , Temozolomide/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacokinetics , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Docetaxel/chemistry , Docetaxel/pharmacology , Docetaxel/pharmacokinetics , Docetaxel/therapeutic use , Silicon Dioxide/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Animals , Nanoparticles/chemistry , Humans , Mice , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Porosity , Drug Carriers/chemistry , Mice, Nude , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects
4.
Chin Med ; 19(1): 43, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448912

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion can further exacerbate myocardial injury and increase the risk of death. Our previous research found that the paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the improvement of myocardial ischemia-reperfusion injury (MIRI) by electroacupuncture (EA) pretreatment, but its mechanism of action is still unclear. CRH neurons exhibit periodic concentrated expression in PVN, but further research is needed to determine whether they are involved in the improvement of MIRI by EA pretreatment. Meanwhile, numerous studies have shown that changes in sympathetic nervous system innervation and activity are associated with many heart diseases. This study aims to investigate whether EA pretreatment improves MIRI through sympathetic nervous system mediated by PVNCRH neurons. METHODS: Integrated use of fiber-optic recording, chemical genetics and other methods to detect relevant indicators: ECG signals were acquired through Powerlab standard II leads, and LabChart 8 calculated heart rate, ST-segment offset, and heart rate variability (HRV); Left ventricular ejection fraction (LVEF), left ventricular short-axis shortening (LVFS), left ventricular end-systolic internal diameter (LVIDs) and interventricular septal thickness (IVSs) were measured by echocardiography; Myocardial infarct area (IA) and area at risk (AAR) were calculated by Evans-TTC staining. Pathological changes in cardiomyocytes were observed by HE staining; Changes in PVNCRH neuronal activity were recorded by fiber-optic photometry; Sympathetic nerve discharges were recorded for in vivo electrophysiology; NE and TH protein expression was assayed by Western blot. RESULTS: Our data indicated that EA pretreatment can effectively alleviate MIRI. Meanwhile, we found that in the MIRI model, the number and activity of CRH neurons co labeled with c-Fos in the PVN area of the rat brain increased, and the frequency of sympathetic nerve discharge increased. EA pretreatment could reverse this change. In addition, the results of chemical genetics indicated that inhibiting PVNCRH neurons has a similar protective effect on MIRI as EA pretreatment, and the activation of PVNCRH neurons can counteract this protective effect. CONCLUSION: EA pretreatment can inhibit PVNCRH neurons and improve MIRI by inhibiting sympathetic nerve, which offers fresh perspectives on the application of acupuncture in the management of cardiovascular disease.

5.
Int J Biol Macromol ; 254(Pt 2): 127834, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926312

ABSTRACT

Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-ß1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-ß1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-ß/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.


Subject(s)
Cordyceps , Liver Diseases , Humans , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cordyceps/metabolism , Epithelial-Mesenchymal Transition , Epithelial Cells , Bile Ducts, Intrahepatic/metabolism , Liver Diseases/metabolism , Fibrosis , Polysaccharides/pharmacology , Polysaccharides/metabolism , Mycelium/metabolism , Cadherins/metabolism
6.
International Eye Science ; (12): 24-29, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003500

ABSTRACT

AIM: To study the protective effect of fenofibrate on diabetic retinal neurodegeneration and observe its effect on miR-26a-5p and its target gene PTEN in the retinal of diabetic mice.METHODS: Diabetic mice models were established and they were gavaged by fenofibrate. H& E staining and transmission electron microscopy were used to observe the impairments of retinal neurons. Real-time PCR was used to examine the expression of miR-26a-5p, and Western blotting was employed to measure the expression of phosphatase and tensin homologue(PTEN)in the retina of diabetic mice. The expression level of nuclear factor-κB(NF-κB), interleukin-1β(IL-1β)and the morphology of neural tissues were observed.RESULTS: When compared with the diabetic mice, fenofibrate significantly attenuated the damage to retinal ganglion cells and the atrophy of retinal nerve fiber layer. While the level of miR-26a-5p was increased and the levels of PTEN and inflammatory mediators were significantly decreased in the retina of fenofibrate treated diabetic mice, with significant statistical significance(P<0.05).CONCLUSIONS: Fenofibrate protects against diabetic retinal neurodegeneration by upregulating miR-26a-5p and inhibiting PTEN, attenuating the inflammatory response and alleviating retinal cell injury.

7.
Neuroscience ; 535: 124-141, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37923164

ABSTRACT

Ischemic heart disease is a fatal cardiovascular disease that irreversibly impairs the function of the heart, followed by reperfusion leading to a further increase in infarct size. Clinically, we call it myocardial ischemia-reperfusion injury (MIRI). A growing number of clinical observations and experimental studies have found electroacupuncture (EA) to be effective in alleviating MIRI. This study attempts to investigate whether glutamatergic neurons in fastigial nucleus (FN) of the cerebellum are involved in EA pretreatment to alleviate MIRI via sympathetic nerves, and the potential mechanisms of EA pretreatment process. A MIRI model was established by ligating the coronary artery of the left anterior descending branch of the heart for 30 minutes, followed by 2 hours of reperfusion. Multichannel physiological recordings, electrocardiogram, cardiac ultrasound, chemical genetics, enzyme-linked immunosorbent assay and immunofluorescence staining methods were combined to demonstrate that EA pretreatment inhibited neuronal firing and c-Fos expression in FN of the cerebellum and reduced cardiac sympathetic firing. Meanwhile, EA pretreatment significantly reduced cardiac ejection fraction (EF), shortening fraction (SF), percentage infarct area, decreased myocardial norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) concentrations, and improved MIRI-induced myocardial tissue morphology. The results were similar to the inhibition of glutamatergic neurons in FN. However, the activation of glutamatergic neurons in FN diminished the aforementioned effects of EA pretreatment. This study revealed that glutamatergic neurons in FN of the cerebellum is involved in EA pretreatment mediated sympathetic nervous and may be a potential mediator for improving MIRI.


Subject(s)
Electroacupuncture , Myocardial Reperfusion Injury , Humans , Cerebellar Nuclei , Cerebellum , Infarction
8.
Zhen Ci Yan Jiu ; 48(10): 1033-1040, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-37879954

ABSTRACT

OBJECTIVES: To investigate the effect of electroacupuncture(EA) at "Changbing Decoction" on alleviating ulcerative colitis (UC) and regulating the polarization of colonic macrophages in rats, so as to explore its mechanisms underlying improvement of UC. METHODS: Twenty-six male SD rats were randomly divided into 4 groups:normal group(6 rats), model group(8 rats), EA group(6 rats), and western medication group(6 rats). The rat model of UC was established by using 5% dextran sulfate sodium (DSS) solution drinking water for 7 days, followed by drinking 1% DSS solution during treatment period. After 7-day model establishment, EA treatment(10 Hz/50 Hz, 20 min) was applied to "Zhongwan"(CV12), bilateral "Tianshu"(ST25) and "Shangjuxu"(ST37) for 3 d, and rats in the western medication group were given mesalazine suspension(200 mg/kg) by gavage for 3 d. The body weight, spleen weight and colon length of rats were measured. The disease activity index (DAI) score was evaluated. The morphological changes and inflammatory cell infiltration of colon were detected after HE staining and pathological scores were eva-luated. The contents of tumor necrosis factor α(TNF-α), interleukin(IL)-1ß, IL-2 and IL-10 in serum were detected by ELISA. The protein expressions of M1 and M2 macrophage markers nitric oxide synthase (iNOS) and arginase 1(Arg1) were detected by fluorescence double staining and Western blot, respectively. Quantitative real-time PCR was used to detect iNOS and Arg1 mRNA expressions. RESULTS: Compared with the normal group, rats in the model group had increased pathological damage degree and inflammatory cell infiltration in the colon tissue, slowed-down body weight gain, decreased colon length, spleen weight, serum anti-inflammatory factors IL-2 and IL-10 contents, colonic Arg1/CD68 fluorescence positive expression, and Arg1 protein and mRNA expressions(P<0.01, P<0.05), as well as increased DAI scores, colon histopathological scores, contents of serum pro-inflammatory factors TNF-α and IL-1ß, colonic iNOS/CD68 fluorescence positive expression, iNOS protein and mRNA expressions(P<0.01). Compared with the model group, the above indicators were significantly improved in rats of the EA group and the western medication group(P<0.01, P<0.05). CONCLUSIONS: EA of "Changbing Decoction" can improve UC of rats by regulating the polarization of colonic macrophages, inhibiting the generation of M1 macrophages and promoting the generation of M2 macrophages.


Subject(s)
Colitis, Ulcerative , Electroacupuncture , Rats , Male , Animals , Colitis, Ulcerative/genetics , Colitis, Ulcerative/therapy , Interleukin-10/genetics , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Interleukin-2 , Macrophages , RNA, Messenger , Body Weight
9.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Article in English | MEDLINE | ID: mdl-37803636

ABSTRACT

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Subject(s)
Curcumin , Salmo salar , Animals , Food Preservation/methods , Food Storage , Curcumin/pharmacology , Curcumin/metabolism , Seafood/analysis , Bacteria/metabolism
10.
iScience ; 26(9): 107645, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37670780

ABSTRACT

A major side effect of reperfusion therapy following myocardial infarction is myocardial ischemia-reperfusion injury (MIRI). Electroacupuncture preconditioning (EA-pre) has a long history in the treatment of cardiovascular diseases. Here, we demonstrate how EA-pre attenuates MIRI by affecting the phagocytosis of neuronal dendritic spines of microglia of the fastigial nucleus (FNmicroglia). We observed that EA-pre increased activity in FNGABA and then improved myocardial injury by inhibiting abnormal activities of glutaminergic neurons of the FN (FNGlu) during MIRI. Interestingly, we observed changes in the quantity and shape of FN microglia in mice treated with EA-pre and a decrease in the phagocytosis of FNGABA neuronal dendritic spines by microglia. Furthermore, the effects of improving MIRI were reversed when EA-pre mice were chemically activated by intra-FN lipopolysaccharide injection. Overall, our results provide new insight indicating that EA-pre regulates microglial engulfment capacity, thus promoting the improvement of cardiac sympathetic nervous disorder during MIRI.

11.
Zhen Ci Yan Jiu ; 48(8): 818-24, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37614141

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Zhongwan" (CV12), "Tianshu" (ST25) and "Shangjuxu" (ST37) (an acupoint prescription "Changbingfang" for treatment of intestinal disorders) on autophagy and expression of AMPK/mTOR signaling pathway in rats with ulcerative colitis (UC), so as to explore its mechanism underlying improvement of UC. METHODS: Thirty-two male SD rats were randomly divided into control, model, medication and EA groups, with 8 rats in each group. The UC model was established by free drinking of 5% dextran sulfate sodium salt solution for 7 days. EA stimulation (10 Hz/50 Hz) was delivered to CV12, ST25 and ST37 for 20 min, once a day for 3 consecutive days. Rats of the medication group received gavage of mesalazine suspension (200 mg/kg) once a day, 3 times in total. The rats' general conditions were recorded for calculating the disease activity index (DAI) score (0-4 points). Histomorphological changes of colon were observed via HE staining. The levels of serum interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and IL-10 were measured by ELISA. The mRNA expressions of LC3B and p62 were tested by fluorescence quantitative PCR. Western blot was used to detect the expression levels of LC3B, p62 and AMPK/mTOR pathway related proteins in colon tissues. RESULTS: Compared with the control group, the DAI score, contents of serum IL-6 and TNF-α, the expression levels of p62 protein and mRNA, ratio of p-mTOR/mTOR were significantly increased (P<0.01); while the content of serum IL-10, the expression levels of LC3B mRNA, ratio of LC3BⅡ/LC3BⅠ and p-AMPK/AMPK were decreased (P<0.01, P<0.05) in the model group. Relevant to the model group, modeling-induced increases of DAI score, serum IL-6, TNF-α and IL-10 contents, expressions of p62 protein and mRNA, LC3B mRNA, ratio of p-mTOR/mTOR, LC3BⅡ/LC3BⅠ and p-AMPK/AMPK were reversed in both medication and EA groups (P<0.01, P<0.05). The effect of EA was apparently superior to that of mesalazine in up-regulating ratio of LC3BⅡ/LC3BⅠ and p-AMPK/AMPK, p62 mRNA expression (P<0.01, P<0.05), and in down-regulating ratio of p-mTOR/mTOR (P<0.05). H.E. staining showed severe damage of the colonic mucosal barrier with infiltration of a large number of inflammatory cells in the model group, which was milder in medication and EA groups. CONCLUSION: EA of acupoint recipe "Changbingfang" can improve the symptoms in UC rats, which may be related to its functions in promoting colonic autophagy, increasing AMPK phosphorylation level, and decreasing mTOR phosphorylation level.


Subject(s)
Colitis, Ulcerative , Electroacupuncture , Male , Animals , Rats , Rats, Sprague-Dawley , Colitis, Ulcerative/genetics , Colitis, Ulcerative/therapy , AMP-Activated Protein Kinases/genetics , Interleukin-10 , Mesalamine , Interleukin-6 , Tumor Necrosis Factor-alpha/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , RNA, Messenger , Autophagy
12.
Zhongguo Zhen Jiu ; 43(6): 669-78, 2023 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-37313561

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI. METHODS: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 µL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR. RESULTS: Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). CONCLUSION: EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Subject(s)
Electroacupuncture , Myocardial Reperfusion Injury , Male , Animals , Rats , Rats, Sprague-Dawley , Cerebellar Nuclei , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/therapy , Receptors, GABA-A/genetics , RNA, Messenger
13.
Menopause ; 30(7): 774-780, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37279508

ABSTRACT

OBJECTIVES: The aims of the study are to understand the prevalence of osteoporosis in postmenopausal women in urban Tianjin, China and its related factors through a questionnaire and to assess the correlation between individual characteristics, physical mobility, psychological and emotional well-being, and prevalence, as well as people's awareness of osteoporosis. METHODS: We selected 240 postmenopausal women from 12 randomly selected streets in 6 administrative districts of Tianjin for bone mineral density measurement and a face-to-face questionnaire survey to obtain the relevant data. Female residents who had lived in the communities under the jurisdiction of the incorporated streets for more than 10 years and had been in menopause for 2 years were included. The women were made aware of the study, there were no communication barriers, and they were willing to undergo dual-energy absorptiometry and cooperate in completing the questionnaire. We used one-way analysis of variance, Fisher exact test, and Pearson correlation analysis for the statistical analysis. RESULTS: The overall prevalence of osteoporosis in postmenopausal women in the six districts of Tianjin was found to be 52.08%, and the χ 2 test for trend showed a clear trend of increasing with age ( P = 0.035). Body mass index was found to be the most significant personal characteristic affecting the prevalence of osteoporosis; the mean values of the nonosteoporosis and osteoporosis group were (25.45 ± 3.09) and (23.85 ± 3.16), respectively ( P < 0.001); previous fractures were closely associated with the prevalence of osteoporosis. Awareness about osteoporosis had not disseminated among the population, and 9.17% of the participants had never heard of the disease. While 75.42% and 72.92% of the participants, respectively, believe that the harm of osteoporosis cannot be compared with heart disease and cerebral infarction, 56.67% had never had an examination for osteoporosis and paid little to no attention to this disease. People still had major misconceptions about the hazards of osteoporosis and common-sense precautions that needed to be followed. CONCLUSIONS: Although osteoporosis is prevalent among postmenopausal women in urban Tianjin and is strongly linked to both history of fracture and body mass index, most women are only familiar with the disease's name and lack an understanding of the dangers it poses as well as the importance of early diagnosis and treatment. To ensure the prevention and control of osteoporosis, it is crucial to focus on increasing the examination and treatment rates and spreading awareness of the three-level diagnosis and treatment pattern among the public.


Subject(s)
Fractures, Bone , Osteoporosis, Postmenopausal , Osteoporosis , Female , Humans , Postmenopause , Prevalence , Osteoporosis/epidemiology , Bone Density , Fractures, Bone/epidemiology , China/epidemiology , Risk Factors , Osteoporosis, Postmenopausal/epidemiology , Osteoporosis, Postmenopausal/diagnosis , Absorptiometry, Photon
15.
Zhen Ci Yan Jiu ; 48(5): 461-7, 2023 May 25.
Article in Chinese | MEDLINE | ID: mdl-37247859

ABSTRACT

OBJECTIVE: To explore the role of nuclear factor E2 related factor 2 (Nrf2) / heme oxygenase (HO-1) signal pathway in electroacupuncture (EA) induced improvement of acute myocardial ischemia (AMI) and its relationship with ferroptosis in rats. METHODS: Male SD rats were randomly and equally divided into sham operation, model, EA and EA+ML385 (inhibitor of Nrf2) groups (n=8). The rat model of AMI was established by ligating the descending anterior branch of the left coronary artery. EA (2 Hz/100 Hz) was applied to bilateral "Shenmen"(HT7) and "Tongli"(HT5) for 20 min, once daily for 7 days. The electrocardiogram (ECG) of standard Ⅱ (ECG ST) lead and heart rate (HR) in each group was recorded and analyzed before and after modeling and after treatment by using PowerLab physiological recorder system. Histopathological changes of myocardial tissue were observed by H.E. staining, and the ultrastructure of myocardiocytes of cardiac apical tissue was observed under transmission electron microscope. The contents of Fe2+ and glutathione (GSH) in the myocardial tissue were measured by chromato-metry. The protein expression levels of Nrf2, HO-1, glutathione peroxidase 4 (GPX4), ferritin heavy chain polypeptide 1 (FTH1) and long chain acyl CoA synthase 4 (ACSL4) in the myocardial tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the HR, ECG ST, Fe2+ content, expression levels of Nrf2, HO-1, FTH1 and ACSL4 proteins in myocardial tissues were significantly increased (P<0.01), while GSH content and GPX4 protein expression considerably decreased (P<0.01) in the model group. Compared with the model group, both EA and EA+ML385 groups had an obvious decrease in HR, Fe2+ content, and ACSL4 levels (P<0.01), and an increase in the expression levels of GPX4 and FTH1 proteins (P<0.01), EA (rather than EA+ML385) effectively down-regulated ECG ST, and up-regulated GSH, Nrf2 and HO-1 (P<0.01), whereas EA+ML385 apparently down-regulated expression levels of Nrf2 and HO-1 (P<0.01). It shows that ML385 pronouncedly weaken the effects of EA in slowing down ECG ST and HR, down-regulating Fe2+ content and ACSL4 expression (P<0.01), up-regulating GSH content, Nrf2, HO-1, GPX4 and FTH1 expressions (P<0.01). H.E. staining showed disordered arrangement and hyperplasia of myocardiocytes, enlarged myocardial fiber gap, agglomerated and deeply stained myoplasma, and some broken myocardial fibers with irregular mass and local tissue fibrosis in the model group, which was relatively milder in both EA and EA+ML385 groups. Compared with the sham operation group, the model group showed decreased mitochondrial atrophy, increased membrane density, and disappearance or reduction of cristae in myocardial cells,which was improved in the EA group. CONCLUSION: EA of HT7 and HT5 has a protective effect on ischemic myocardium in rats, which may be related to its effects in reducing oxidative stress by regulating Nrf2/HO-1 signaling pathway, and inhibiting "iron death" of myocardial cells.


Subject(s)
Electroacupuncture , Ferroptosis , Myocardial Ischemia , Rats , Male , Animals , NF-E2-Related Factor 2/genetics , Rats, Sprague-Dawley , Ferroptosis/genetics , Tooth Apex , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Signal Transduction
16.
Neoplasma ; 70(2): 272-286, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37226932

ABSTRACT

Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in a variety of malignant tumors and functions as an oncogene; however, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the function and regulatory mechanisms of NUCKS1 and potential therapeutic agents targeting NUCKS1 in CRC. We knocked down and overexpressed NUCKS1 in CRC cells and explored its effects in vitro and in vivo. Flow cytometry, CCK-8, Western blotting, colony formation, immunohistochemistry, in vivo tumorigenic, and transmission electron microscopy analyses were performed to determine the effects of NUCKS1 on CRC cell function. LY294002 was used to examine the mechanism of NUCKS1 expression in CRC cells. Potential therapeutic agents for NUCKS1-high CRC patients were analyzed using the CTRP and PRISM datasets, and the function of selected agents was determined by CCK-8 and Western blotting. We revealed that NUCKS1 was highly expressed in CRC tissues and clinically correlated with poor prognosis in CRC patients. NUCKS1 knockdown induces cell cycle arrest, inhibits CRC cell proliferation, and promotes apoptosis and autophagy. These results were reversed when NUCKS1 was overexpressed. Mechanistically, NUCKS1 exerts a cancer-promoting function by activating the PI3K/AKT/mTOR signaling pathway. This was reversed when LY294002 was used to inhibit the PI3K/AKT pathway. Furthermore, we determined that mitoxantrone exhibited high drug sensitivity in NUCKS1-overexpressing CRC cells. This work demonstrated NUCKS1 plays a crucial role in CRC progression via the PI3K/AKT/mTOR signaling pathway. Additionally, mitoxantrone may be a potential therapeutic agent for CRC treatment. Therefore, NUCKS1 represents a promising anti-tumor therapeutic target.


Subject(s)
Colorectal Neoplasms , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Phosphoproteins , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Mitoxantrone , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Phosphoproteins/genetics , Phosphoproteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
17.
Front Neurosci ; 17: 1069198, 2023.
Article in English | MEDLINE | ID: mdl-36908796

ABSTRACT

Introduction: Symptoms of gastric motility disorders are common clinical manifestations of functional gastrointestinal disorders (FGIDs), and are triggered and exacerbated by stress, but the neural pathways underpinning them remain unclear. Methods: We set-up a mouse model by gastric dilation (GD) in which the gastric dynamics were assessed by installing strain gauges on the surface of the stomach. The neural pathway associated with gastric motility disorders was investigated by behavioral tests, electrophysiology, neural circuit tracing, and optogenetics and chemogenetics involving projections of the corticotropin-releasing hormone (CRH) from the paraventricular nucleus of the hypothalamus (PVN) to acetylcholine (ChAT) neurons in the dorsal motor nucleus of the vagus (DMV). Results: We found that GD induced gastric motility disorders were accompanied by activation of PVN CRH neurons, which could be alleviated by strategies that inhibits the activity of PVN CRH neurons. In addition, we identified a neural pathway in which PVN CRH neurons project into DMV ChAT neurons, modulated activity of the PVN CRH →DMV ChAT pathway to alleviate gastric motility disorders induced by GD. Discussion: These findings indicate that the PVN CRH →DMV ChAT pathway may mediate at least some aspects of GD related gastric motility, and provide new insights into the mechanisms by which somatic stimulation modulates the physiological functions of internal organs and systems.

18.
Angew Chem Int Ed Engl ; 62(23): e202300704, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36988016

ABSTRACT

Despite the widespread success in the functionalization of C(sp2 )-H bonds, the deliberate functionalization of C(sp3 )-H bonds in a highly site- and stereoselective manner remains a longstanding challenge. Herein, we report an iridium/aluminum cooperative catalytic system that enables the ß-selective C-H borylation of saturated cyclic amines and lactams. Furthermore, we have accomplished an enantioselective variant using binaphthol-derived chiral aluminum catalysts to forge C-B bonds with high levels of stereocontrol. Computational studies suggest that the formation of a Lewis pair with the substrates is crucial to lower the energy of the transition state for the rate-determining reductive elimination step.

19.
Front Physiol ; 14: 1074979, 2023.
Article in English | MEDLINE | ID: mdl-36875016

ABSTRACT

Background/aims: Psychological and physiological stress can cause gastrointestinal motility disorders. Acupuncture has a benign regulatory effect on gastrointestinal motility. However, the mechanisms underlying these processes remain unclear. Methods: Herein, we established a gastric motility disorder (GMD) model in the context of restraint stress (RS) and irregular feeding. The activity of emotional center-central amygdala (CeA) GABAergic neurons and gastrointestinal center-dorsal vagal complex (DVC) neurons were recorded by electrophysiology. Virus tracing and patch clamp analysis of the anatomical and functional connection between the CeAGABA → dorsal vagal complex pathways were performed. Optogenetics inhibiting or activating CeAGABA neurons or the CeAGABA → dorsal vagal complex pathway were used to detect changes in gastric function. Results: We found that restraint stress induced delayed gastric emptying and decreased gastric motility and food intake. Simultaneously, restraint stress activated CeA GABAergic neurons, inhibiting dorsal vagal complex neurons, with electroacupuncture (EA) reversing this phenomenon. In addition, we identified an inhibitory pathway in which CeA GABAergic neurons project into the dorsal vagal complex. Furthermore, the use of optogenetic approaches inhibited CeAGABA neurons and the CeAGABA → dorsal vagal complex pathway in gastric motility disorder mice, which enhanced gastric movement and gastric emptying, whereas activation of the CeAGABA and CeAGABA → dorsal vagal complex pathway mimicked the symptoms of weakened gastric movement and delayed gastric emptying in naïve mice. Conclusion: Our findings indicate that the CeAGABA → dorsal vagal complex pathway may be involved in regulating gastric dysmotility under restraint stress conditions, and partially reveals the mechanism of electroacupuncture.

20.
Chin J Integr Med ; 29(8): 721-729, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35508860

ABSTRACT

OBJECTIVE: To evaluate whether electroacupuncture (EA) would improve gastrointestinal function and clinical prognosis in patients with severe traumatic brain injury (TBI) complicocted by acute gastrointestinal injury (AGI). METHODS: This multicenter, single-blind trial included patients with TBI and AGI admitted to 5 Chinese hospitals from September 2018 to December 2019. A total of 500 patients were randomized to the control or acupuncture groups using a random number table, 250 cases in each group. Patients in the control group received conventional treatment, including mannitol, nutritional support, epilepsy and infection prevention, and maintenance of water, electrolytes, and acid-base balance. While patients in the acupuncture group received EA intervention at bilateral Zusanli (ST 36), Shangjuxu (ST 37), Xiajuxu (ST 39), Tianshu (ST 25), and Zhongwan (RN 12) acupoints in addition to the conventional treatment, 30 min per time, twice daily, for 7 d. The primary endpoint was 28-d mortality. The secondary endpoints were serum levels of D-lactic acid (D-lac), diamine oxidase (DAO), lipopolysaccharide (LPS), motilin (MTL) and gastrin (GAS), intra-abdominal pressure (IAP), bowel sounds, abdominal circumference, AGI grade, scores of gastrointestinal failure (GIF), Glasgow Coma Scale (GCS), Acute Physiology and Chronic Health Evaluation (APACHE II), Sequential Organ Failure Assessment (SOFA), and Multiple Organ Dysfunction Syndrome (MODS), mechanical ventilation time, intense care unit (ICU) stay, and the incidence of hospital-acquired pneumonia. RESULTS: The 28-d mortality in the acupuncture group was lower than that in the control group (22.80% vs. 33.20%, P<0.05). Compared with the control group, the acupuncture group at 7 d showed lower GIF, APACHE II, SOFA, MODS scores, D-lac, DAO, LPS, IAP, and abdominal circumference and higher GCS score, MTL, GAS, and bowel sound frequency (all P<0.05). In addition, the above indices showed simillar changes at 7 d compared with days 1 and 3 (all P<0.05) in the EA group. CONCLUSION: Early EA can improve gastrointestinal function and clinical prognosis in patients with severe TBI complicated by AGI. (Registration No. ChiCTR2000032276).


Subject(s)
Acupuncture Therapy , Brain Injuries, Traumatic , Electroacupuncture , Humans , Lipopolysaccharides , Single-Blind Method , Brain Injuries, Traumatic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...