Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Pediatr Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898107

ABSTRACT

BACKGROUND: Globally, one in ten babies is born preterm (<37 weeks), and 1-2% preterm at very low birth weight (VLBW, <1500 g). As adults, they are at increased risk for a plethora of health conditions, e.g., cardiometabolic disease, which may partly be mediated by epigenetic regulation. We compared blood DNA methylation between young adults born at VLBW and controls. METHODS: 157 subjects born at VLBW and 161 controls born at term, from the Helsinki Study of Very Low Birth Weight Adults, were assessed for peripheral venous blood DNA methylation levels at mean age of 22 years. Significant CpG-sites (5'-C-phosphate-G-3') were meta-analyzed against continuous birth weight in four independent cohorts (pooled n = 2235) with cohort mean ages varying from 0 to 31 years. RESULTS: In the discovery cohort, 66 CpG-sites were differentially methylated between VLBW adults and controls. Top hits were located in HIF3A, EBF4, and an intergenic region nearest to GLI2 (distance 57,533 bp). Five CpG-sites, all in proximity to GLI2, were hypermethylated in VLBW and associated with lower birth weight in the meta-analysis. CONCLUSION: We identified differentially methylated CpG-sites suggesting an epigenetic signature of preterm birth at VLBW present in adult life. IMPACT: Being born preterm at very low birth weight has major implications for later health and chronic disease risk factors. The mechanism linking preterm birth to later outcomes remains unknown. Our cohort study of 157 very low birth weight adults and 161 controls found 66 differentially methylated sites at mean age of 22 years. Our findings suggest an epigenetic mark of preterm birth present in adulthood, which opens up opportunities for mechanistic studies.

2.
PLoS One ; 19(6): e0306217, 2024.
Article in English | MEDLINE | ID: mdl-38905288

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0279443.].

3.
Aging Cell ; : e14194, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808605

ABSTRACT

Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.

4.
Hum Reprod ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815977

ABSTRACT

STUDY QUESTION: Can a genome-wide association study (GWAS) meta-analysis, including a large sample of young premenopausal women from a founder population from Northern Finland, identify novel genetic variants for circulating anti-Müllerian hormone (AMH) levels and provide insights into single-nucleotide polymorphism enrichment in different biological pathways and tissues involved in AMH regulation? SUMMARY ANSWER: The meta-analysis identified a total of six loci associated with AMH levels at P < 5 × 10-8, three of which were novel in or near CHEK2, BMP4, and EIF4EBP1, as well as highlighted significant enrichment in renal system vasculature morphogenesis, and the pituitary gland as the top associated tissue in tissue enrichment analysis. WHAT IS KNOWN ALREADY: AMH is expressed by preantral and small antral stage ovarian follicles in women, and variation in age-specific circulating AMH levels has been associated with several health conditions. However, the biological mechanisms underlying the association between health conditions and AMH levels are not yet fully understood. Previous GWAS have identified loci associated with AMH levels in pre-menopausal women, in or near MCM8, AMH, TEX41, and CDCA7. STUDY DESIGN, SIZE, DURATION: We performed a GWAS meta-analysis for circulating AMH level measurements in 9668 pre-menopausal women. PARTICIPANTS/MATERIALS, SETTING, METHODS: We performed a GWAS meta-analysis in which we combined 2619 AMH measurements (at age 31 years) from a prospective founder population cohort (Northern Finland Birth Cohort 1966, NFBC1966) with a previous GWAS meta-analysis that included 7049 pre-menopausal women (age range 15-48 years) (N = 9668). NFBC1966 AMH measurements were quantified using an automated assay. We annotated the genetic variants, combined different data layers to prioritize potential candidate genes, described significant pathways and tissues enriched by the GWAS signals, identified plausible regulatory roles using colocalization analysis, and leveraged publicly available summary statistics to assess genetic and phenotypic correlations with multiple traits. MAIN RESULTS AND THE ROLE OF CHANCE: Three novel genome-wide significant loci were identified. One of these is in complete linkage disequilibrium with c.1100delC in CHEK2, which is found to be 4-fold enriched in the Finnish population compared to other European populations. We propose a plausible regulatory effect of some of the GWAS variants linked to AMH, as they colocalize with GWAS signals associated with gene expression levels of BMP4, TEX41, and EIFBP41. Gene set analysis highlighted significant enrichment in renal system vasculature morphogenesis, and tissue enrichment analysis ranked the pituitary gland as the top association. LARGE SCALE DATA: The GWAS meta-analysis summary statistics are available for download from the GWAS Catalogue with accession number GCST90428625. LIMITATIONS, REASONS FOR CAUTION: This study only included women of European ancestry and the lack of sufficiently sized relevant tissue data in gene expression datasets hinders the assessment of potential regulatory effects in reproductive tissues. WIDER IMPLICATIONS OF THE FINDINGS: Our results highlight the increased power of founder populations and larger sample sizes to boost the discovery of novel trait-associated variants underlying variation in AMH levels, which aided the characterization of GWAS signals enrichment in different biological pathways and plausible genetic regulatory effects linked with AMH level variation for the first time. STUDY FUNDING/COMPETING INTEREST(S): This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the MATER Marie Sklodowska-Curie Grant Agreement No. 813707 and Oulu University Scholarship Foundation and Paulon Säätiö Foundation. (N.P.-G.), Academy of Finland, Sigrid Jusélius Foundation, Novo Nordisk, University of Oulu, Roche Diagnostics (T.T.P.). This work was supported by the Estonian Research Council Grant 1911 (R.M.). J.R. was supported by the European Union's Horizon 2020 Research and Innovation Program under Grant Agreements No. 874739 (LongITools), 824989 (EUCAN-Connect), 848158 (EarlyCause), and 733206 (LifeCycle). U.V. was supported by the Estonian Research Council grant PRG (PRG1291). The NFBC1966 received financial support from University of Oulu Grant No. 24000692, Oulu University Hospital Grant No. 24301140, and ERDF European Regional Development Fund Grant No. 539/2010 A31592. T.T.P. has received grants from Roche, Perkin Elmer, and honoraria for scientific presentations from Gedeon Richter, Exeltis, Astellas, Roche, Stragen, Astra Zeneca, Merck, MSD, Ferring, Duodecim, and Ajaton Terveys. For all other authors, there are no competing interests.

5.
Article in English | MEDLINE | ID: mdl-38366065

ABSTRACT

Understanding the biological mechanisms behind multimorbidity patterns in adolescence is important as they may act as intermediary risk factor for long-term health. We aimed to explore relationship between prenatal exposures and adolescent's psycho-cardiometabolic intermediary traits mediated through epigenetic biomarkers, using structural equation modeling (SEM). We used data from mother-child dyads from pregnancy and adolescents at 16-17 years from two prospective cohorts: Northern Finland Birth Cohort 1986 (NFBC1986) and Raine Study from Australia. Factor analysis was applied to generate two different latent factor structures: (a) prenatal exposures and (b) adolescence psycho-cardiometabolic intermediary traits. Furthermore, three types of epigenetic biomarkers were included: (1) DNA methylation score for maternal smoking during pregnancy (DNAmMSS), (2) DNAm age estimate PhenoAge and (3) DNAm estimate for telomere length (DNAmTL). Similar factor structure was observed between both cohorts yielding three prenatal factors, namely BMI (Body Mass Index), SOP (Socio-Obstetric-Profile), and Lifestyle, and four adolescent factors: Anthropometric, Insulin-Triglycerides, Blood Pressure, and Mental health. In the SEM pathways, stronger direct effects of F1prenatal-BMI (NFBC1986 = ß: 0.27; Raine = ß: 0.39) and F2prenatal-SOP (ß: -0.11) factors were observed on adolescent psycho-cardiometabolic multimorbidity. We observed an indirect effect of prenatal latent factors through epigenetic markers on a psycho-cardiometabolic multimorbidity factor in Raine study (P < 0.05). The present study exemplifies an evidence-based approach in two different birth cohorts to demonstrate similar composite structure of prenatal exposures and psycho-cardiometabolic traits (despite cultural, social, and genetic differences) and a common plausible pathway between them through underlying epigenetic markers.

6.
Commun Biol ; 7(1): 66, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195839

ABSTRACT

Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.


Subject(s)
Birth Order , DNA Methylation , Child , Female , Humans , Infant, Newborn , Pregnancy , Epigenesis, Genetic , Epigenomics
7.
Mol Psychiatry ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052982

ABSTRACT

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

8.
Nat Genet ; 55(11): 1807-1819, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37798380

ABSTRACT

A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.


Subject(s)
Genome-Wide Association Study , Placenta , Female , Humans , Pregnancy , Birth Weight/genetics , Fetal Development/genetics , Insulin , Placenta/metabolism , Male
9.
Diabetes Care ; 46(11): 2067-2075, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37756535

ABSTRACT

OBJECTIVE: Dietary glycemic index (GI) and glycemic load (GL) are associated with cardiometabolic health in children and adolescents, with potential distinct effects in people with increased BMI. DNA methylation (DNAm) may mediate these effects. Thus, we conducted meta-analyses of epigenome-wide association studies (EWAS) between dietary GI and GL and blood DNAm of children and adolescents. RESEARCH DESIGN AND METHODS: We calculated dietary GI and GL and performed EWAS in children and adolescents (age range: 4.5-17 years) from six cohorts (N = 1,187). We performed stratified analyses of participants with normal weight (n = 801) or overweight or obesity (n = 386). We performed look-ups for the identified cytosine-phosphate-guanine (CpG) sites (false discovery rate [FDR] <0.05) with tissue-specific gene expression of 832 blood and 223 subcutaneous adipose tissue samples from children and adolescents. RESULTS: Dietary GL was positively associated with DNAm of cg20274553 (FDR <0.05), annotated to WDR27. Several CpGs were identified in the normal-weight (GI: 85; GL: 17) and overweight or obese (GI: 136; GL: 298; FDR <0.05) strata, and none overlapped between strata. In participants with overweight or obesity, identified CpGs were related to RNA expression of genes associated with impaired metabolism (e.g., FRAT1, CSF3). CONCLUSIONS: We identified 537 associations between dietary GI and GL and blood DNAm, mainly in children and adolescents with overweight or obesity. High-GI and/or -GL diets may influence epigenetic gene regulation and thereby promote metabolic derangements in young people with increased BMI.


Subject(s)
Glycemic Index , Glycemic Load , Humans , Child , Adolescent , Child, Preschool , Glycemic Index/physiology , Overweight , DNA Methylation/genetics , Epigenome , Diet , Obesity , Proto-Oncogene Proteins , Adaptor Proteins, Signal Transducing
11.
PLoS Med ; 20(1): e1004036, 2023 01.
Article in English | MEDLINE | ID: mdl-36701266

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of perinatal morbidity and mortality and is associated with adverse developmental and long-term health outcomes, including several cardiometabolic risk factors and outcomes. However, evidence about the association of preterm birth with later body size derives mainly from studies using birth weight as a proxy of prematurity rather than an actual length of gestation. We investigated the association of gestational age (GA) at birth with body size from infancy through adolescence. METHODS AND FINDINGS: We conducted a two-stage individual participant data (IPD) meta-analysis using data from 253,810 mother-child dyads from 16 general population-based cohort studies in Europe (Denmark, Finland, France, Italy, Norway, Portugal, Spain, the Netherlands, United Kingdom), North America (Canada), and Australasia (Australia) to estimate the association of GA with body mass index (BMI) and overweight (including obesity) adjusted for the following maternal characteristics as potential confounders: education, height, prepregnancy BMI, ethnic background, parity, smoking during pregnancy, age at child's birth, gestational diabetes and hypertension, and preeclampsia. Pregnancy and birth cohort studies from the LifeCycle and the EUCAN-Connect projects were invited and were eligible for inclusion if they had information on GA and minimum one measurement of BMI between infancy and adolescence. Using a federated analytical tool (DataSHIELD), we fitted linear and logistic regression models in each cohort separately with a complete-case approach and combined the regression estimates and standard errors through random-effects study-level meta-analysis providing an overall effect estimate at early infancy (>0.0 to 0.5 years), late infancy (>0.5 to 2.0 years), early childhood (>2.0 to 5.0 years), mid-childhood (>5.0 to 9.0 years), late childhood (>9.0 to 14.0 years), and adolescence (>14.0 to 19.0 years). GA was positively associated with BMI in the first decade of life, with the greatest increase in mean BMI z-score during early infancy (0.02, 95% confidence interval (CI): 0.00; 0.05, p < 0.05) per week of increase in GA, while in adolescence, preterm individuals reached similar levels of BMI (0.00, 95% CI: -0.01; 0.01, p 0.9) as term counterparts. The association between GA and overweight revealed a similar pattern of association with an increase in odds ratio (OR) of overweight from late infancy through mid-childhood (OR 1.01 to 1.02) per week increase in GA. By adolescence, however, GA was slightly negatively associated with the risk of overweight (OR 0.98 [95% CI: 0.97; 1.00], p 0.1) per week of increase in GA. Although based on only four cohorts (n = 32,089) that reached the age of adolescence, data suggest that individuals born very preterm may be at increased odds of overweight (OR 1.46 [95% CI: 1.03; 2.08], p < 0.05) compared with term counterparts. Findings were consistent across cohorts and sensitivity analyses despite considerable heterogeneity in cohort characteristics. However, residual confounding may be a limitation in this study, while findings may be less generalisable to settings in low- and middle-income countries. CONCLUSIONS: This study based on data from infancy through adolescence from 16 cohort studies found that GA may be important for body size in infancy, but the strength of association attenuates consistently with age. By adolescence, preterm individuals have on average a similar mean BMI to peers born at term.


Subject(s)
Overweight , Premature Birth , Child , Pregnancy , Female , Humans , Infant, Newborn , Infant , Child, Preschool , Adolescent , Overweight/epidemiology , Overweight/complications , Gestational Age , Risk Factors , Premature Birth/epidemiology , Cohort Studies , Birth Weight , Body Mass Index
12.
BMC Med ; 21(1): 23, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653824

ABSTRACT

BACKGROUND: Common pregnancy and perinatal complications are associated with offspring cardiometabolic risk factors. These complications may influence multiple metabolic traits in the offspring and these associations might differ with offspring age. METHODS: We used data from eight population-based cohort studies to examine and compare associations of pre-eclampsia (PE), gestational hypertension (GH), gestational diabetes (GD), preterm birth (PTB), small (SGA) and large (LGA) for gestational age (vs. appropriate size for gestational age (AGA)) with up to 167 plasma/serum-based nuclear magnetic resonance-derived metabolic traits encompassing lipids, lipoproteins, fatty acids, amino acids, ketones, glycerides/phospholipids, glycolysis, fluid balance, and inflammation. Confounder-adjusted regression models were used to examine associations (adjusted for maternal education, parity age at pregnancy, ethnicity, pre/early pregnancy body mass index and smoking, and offspring sex and age at metabolic trait assessment), and results were combined using meta-analysis by five age categories representing different periods of the offspring life course: neonates (cord blood), infancy (mean ages: 1.1-1.6 years), childhood (4.2-7.5 years); adolescence (12.0-16.0 years), and adulthood (22.0-67.8 years). RESULTS: Offspring numbers for each age category/analysis varied from 8925 adults (441 PTB) to 1181 infants (135 GD); 48.4% to 60.0% were females. Pregnancy complications (PE, GH, GD) were each associated with up to three metabolic traits in neonates (P≤0.001) with some evidence of persistence to older ages. PTB and SGA were associated with 32 and 12 metabolic traits in neonates respectively, which included an adjusted standardised mean difference of -0.89 standard deviation (SD) units for albumin with PTB (95% CI: -1.10 to -0.69, P=1.3×10-17) and -0.41 SD for total lipids in medium HDL with SGA (95% CI: -0.56 to -0.25, P=2.6×10-7), with some evidence of persistence to older ages. LGA was inversely associated with 19 metabolic traits including lower levels of cholesterol, lipoproteins, fatty acids, and amino acids, with associations emerging in adolescence, (e.g. -0.11 SD total fatty acids, 95% CI: -0.18 to -0.05, P=0.0009), and attenuating with older age across adulthood. CONCLUSIONS: These reassuring findings suggest little evidence of wide-spread and long-term impact of common pregnancy and perinatal complications on offspring metabolic traits, with most associations only observed for newborns rather than older ages, and for perinatal rather than pregnancy complications.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Pre-Eclampsia , Pregnancy Complications , Premature Birth , Pregnancy , Female , Adult , Adolescent , Infant, Newborn , Humans , Child , Infant , Male , Cohort Studies , Premature Birth/etiology , Pregnancy Complications/epidemiology , Lipoproteins , Fatty Acids
13.
Eur J Endocrinol ; 187(5): 651-661, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36074951

ABSTRACT

Objective: Telomeres are DNA-protein complexes that protect chromosome ends from DNA damage and are surrogate biomarkers of cellular aging. Current evidence, almost entirely from cross-sectional observations, supports negative associations between leukocyte telomere length (LTL) and adverse lifestyle factors and cardiometabolic risk factors. Polycystic ovary syndrome (PCOS), the most common gynecological endocrine disorder, is associated with inflammation and oxidative stress, both factors associated with accelerated telomere attrition. We therefore hypothesized that LTL would be shorter and decrease more rapidly in women with PCOS in comparison to a control population. Design: This is a population-based cohort study comprising women of Northern Finland Birth Cohort 1966, with clinical examinations at ages 31 and 46. The sample included self-reported PCOS (age 31, n = 190; age 46, n = 207) and referent women (age 31, n = 1054; age 46, n = 1324) with data on LTL. Methods: The association between LTL and PCOS at ages 31 and 46 was analyzed by linear regression models adjusted for BMI, smoking, alcohol consumption and socioeconomic status at the corresponding age. Results: Women with PCOS had similar mean LTL at ages 31 and 46 (P > 0.4 for both). The mean LTL change between ages 31 and 46 did not differ between groups (P = 0.19). However, we observed a significant LTL attrition between ages 31 and 46 in the reference population (P < 0.001), but not in women with PCOS (P = 0.96). Conclusions: This finding may suggest a difference in the LTL attrition rate in women with PCOS, an unexpected finding that might affect their risk of age-related disease. Further research is needed to clarify the underlying mechanisms.


Subject(s)
Polycystic Ovary Syndrome , Adult , Biomarkers , Cohort Studies , Cross-Sectional Studies , DNA , Female , Humans , Leukocytes , Longitudinal Studies , Middle Aged , Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/genetics , Telomere
14.
Int J Obes (Lond) ; 46(8): 1470-1477, 2022 08.
Article in English | MEDLINE | ID: mdl-35562396

ABSTRACT

OBJECTIVES: Type 2 diabetes (T2D) and comorbid depression challenges clinical management particularly in individuals with overweight. We aim to explore the shared etiology, via lifecourse adiposity, between T2D and depression. METHODS: We used data from birth until 46years from Northern Finland Birth Cohort 1966 (n = 6,372; 53.8% females). We conducted multivariate analyses on three outcomes: T2D (4.2%), depression (19.2%) and as comorbidity (1.8%). We conducted (i) Path analysis to clarify time-dependent body mass index (BMI) related pathways, including BMI polygenic risk scores (PRS); and (ii) Cox regression models to assess whether reduction of overweight between 7years and 31years influence T2D, depression and/or comorbidity. The models were tested for covariation with sex, education, smoking, physical activity, and diet score. RESULTS: The odd ratios (OR) of T2D in individuals with depression was 1.68 [95% confidence interval (CI): 1.34-2.11], and no change in estimate was observed when adjusted for covariates. T2D and comorbidity showed similar patterns of relationships in the path analyses (P < 0.001). The genetic risk for obesity (PRS BMI) did not show direct effect on T2D or comorbidity in adulthood but indirectly through measures of adiposity in early childhood and mid-adulthood in the path analysis (P < 0.001). Having early-onset of overweight at 7years and 31years showed highest risk of T2D (OR 3.8, 95%CI 2.4-6.1) and comorbidity (OR 5.0, 95%CI 2.7-9.5), with mild-to-moderate attenuation with adjustments. Depression showed no significant associations. CONCLUSIONS: We found evidence for overweight since childhood as a risk factor for T2D and co-morbidity between T2D and depression, influenced moderately by lifestyle factors in later life. However, no shared early life adiposity related risk factors were observed between T2D and depression when assessed independently in this Finnish setting.


Subject(s)
Adiposity , Diabetes Mellitus, Type 2 , Adult , Birth Cohort , Body Mass Index , Child, Preschool , Comorbidity , Depression/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Female , Finland/epidemiology , Humans , Male , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , Risk Factors
15.
Scand J Clin Lab Invest ; 82(3): 173-180, 2022 05.
Article in English | MEDLINE | ID: mdl-35416741

ABSTRACT

Leucocyte telomere length (LTL) has been associated with nonalcoholic fatty liver disease (NAFLD), but the evidence is imperfect. Furthermore, liver fibrosis has been shown to correlate with mortality and recent studies have also found associations with LTL and fibrosis suggesting that LTL may have additional prognostic value in liver diseases. Our objective was to study the association of LTL and NAFLD and evaluate the association of LTL in prognosis of NAFLD subjects. Study subjects (n = 847) were middle-aged hypertensive patients. All participants were evaluated for NAFLD and their LTL was measured at baseline. Outcomes were obtained from Finnish Causes-of-Death Register and the Care Register for Health Care in Statistics Finland to the end of 2014. An inverse association with NAFLD prevalence and LTL length was observed (p < .001 for trend). Shortest telomere tertile possessed statistically significantly more NAFLD subjects even with multivariate analysis (shortest vs. middle tertile HR 1.98 p = .006 and shortest vs. longest tertile HR 2.03 p = .007). For the study period, mortality of the study group showed statistically significant relation with telomere length in univariate but not for multivariate analysis. In subgroup analysis, LTL did not associate with prognosis of non-NAFLD subjects. However, LTL was inversely associated with overall mortality in the subjects with NAFLD in both univariate (HR 0.16 p = .007) and multivariate analysis (HR 0.20 p = .045). In middle-aged Caucasian cohort, shorter leucocyte telomeres associated independently with increased prevalence of NAFLD. Shorter LTL was not associated with mortality in non-NAFLD patients whereas it predicted mortality of NAFLD patients independently.


Subject(s)
Non-alcoholic Fatty Liver Disease , Follow-Up Studies , Humans , Leukocytes , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Prognosis , Telomere/genetics
16.
Aging (Albany NY) ; 14(3): 1128-1156, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35113041

ABSTRACT

Recent evidence indicates consistent association of low socioeconomic status with epigenetic age acceleration, measured from DNA methylation. As work characteristics and job stressors are crucial components of socioeconomic status, we investigated their association with various measures of epigenetic age acceleration. The study population included employed and unemployed men and women (n=604) from the Northern Finland Birth Cohort 1966. We investigated the association of job strain, effort-reward imbalance and work characteristics with five biomarkers of epigenetic aging (Hannum, Horvath, PhenoAge, GrimAge, and DunedinPoAm). Our results indicate few significant associations between work stress indicators and epigenetic age acceleration, limited to a range of ±2 years, and smoking recording the highest effect on GrimAge age acceleration biomarker between current and no smokers (median difference 4.73 years (IQR 1.18, 8.41). PhenoAgeAA was associated with job strain active work (ß=-1.301 95%CI -2.391, -0.212), slowing aging of less than 1.5 years, and working as white-collar slowed aging six months (GrimAgeAA ß=-0.683, 95%CI -1.264, -0.102) when compared to blue collars. Association was found for working for more than 40 hours per week that increased the aging over 1.5 years, (HorvathAA ß =2.058 95%CI 0.517,3.599, HannumAA ß=1.567, 95%CI 0.415,2.719). The pattern of associations was different between women and men and some of the estimated effects are inconsistent with current literature. Our results provide the first evidence of association of work conditions with epigenetic aging biomarkers. However, further epidemiological research is needed to fully understand how work-related stress affects epigenetic age acceleration in men and women in different societies.


Subject(s)
Birth Cohort , Occupational Stress , Acceleration , Aging/genetics , Biomarkers , DNA Methylation , Epigenesis, Genetic , Female , Finland/epidemiology , Humans , Male , Occupational Stress/epidemiology , Occupational Stress/genetics
17.
Diabetes Care ; 45(3): 614-623, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35104326

ABSTRACT

OBJECTIVE: Maternal glycemic dysregulation during pregnancy increases the risk of adverse health outcomes in her offspring, a risk thought to be linearly related to maternal hyperglycemia. It is hypothesized that changes in offspring DNA methylation (DNAm) underline these associations. RESEARCH DESIGN AND METHODS: To address this hypothesis, we conducted fixed-effects meta-analyses of epigenome-wide association study (EWAS) results from eight birth cohorts investigating relationships between cord blood DNAm and fetal exposure to maternal glucose (Nmaximum = 3,503), insulin (Nmaximum = 2,062), and area under the curve of glucose (AUCgluc) following oral glucose tolerance tests (Nmaximum = 1,505). We performed lookup analyses for identified cytosine-guanine dinucleotides (CpGs) in independent observational cohorts to examine associations between DNAm and cardiometabolic traits as well as tissue-specific gene expression. RESULTS: Greater maternal AUCgluc was associated with lower cord blood DNAm at neighboring CpGs cg26974062 (ß [SE] -0.013 [2.1 × 10-3], P value corrected for false discovery rate [PFDR] = 5.1 × 10-3) and cg02988288 (ß [SE]-0.013 [2.3 × 10-3], PFDR = 0.031) in TXNIP. These associations were attenuated in women with GDM. Lower blood DNAm at these two CpGs near TXNIP was associated with multiple metabolic traits later in life, including type 2 diabetes. TXNIP DNAm in liver biopsies was associated with hepatic expression of TXNIP. We observed little evidence of associations between either maternal glucose or insulin and cord blood DNAm. CONCLUSIONS: Maternal hyperglycemia, as reflected by AUCgluc, was associated with lower cord blood DNAm at TXNIP. Associations between DNAm at these CpGs and metabolic traits in subsequent lookup analyses suggest that these may be candidate loci to investigate in future causal and mediation analyses.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , DNA Methylation/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Epigenesis, Genetic , Epigenome , Female , Fetal Blood/metabolism , Humans , Infant, Newborn , Pregnancy
18.
Environ Epidemiol ; 6(1): e184, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169663

ABSTRACT

The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our "modern" postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.

19.
Epigenetics ; 17(1): 19-31, 2022 01.
Article in English | MEDLINE | ID: mdl-33331245

ABSTRACT

Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Adolescent , Child , Child, Preschool , Epigenome , Epigenomics , Female , Fetal Blood/metabolism , Hemoglobins/genetics , Hemoglobins/metabolism , Humans , Infant, Newborn , Pregnancy
20.
Eur J Epidemiol ; 36(5): 565-580, 2021 May.
Article in English | MEDLINE | ID: mdl-33884544

ABSTRACT

The Horizon2020 LifeCycle Project is a cross-cohort collaboration which brings together data from multiple birth cohorts from across Europe and Australia to facilitate studies on the influence of early-life exposures on later health outcomes. A major product of this collaboration has been the establishment of a FAIR (findable, accessible, interoperable and reusable) data resource known as the EU Child Cohort Network. Here we focus on the EU Child Cohort Network's core variables. These are a set of basic variables, derivable by the majority of participating cohorts and frequently used as covariates or exposures in lifecourse research. First, we describe the process by which the list of core variables was established. Second, we explain the protocol according to which these variables were harmonised in order to make them interoperable. Third, we describe the catalogue developed to ensure that the network's data are findable and reusable. Finally, we describe the core data, including the proportion of variables harmonised by each cohort and the number of children for whom harmonised core data are available. EU Child Cohort Network data will be analysed using a federated analysis platform, removing the need to physically transfer data and thus making the data more accessible to researchers. The network will add value to participating cohorts by increasing statistical power and exposure heterogeneity, as well as facilitating cross-cohort comparisons, cross-validation and replication. Our aim is to motivate other cohorts to join the network and encourage the use of the EU Child Cohort Network by the wider research community.


Subject(s)
Databases, Factual/standards , Information Dissemination , Child , Child, Preschool , Cohort Studies , Europe , Humans , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...