Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Mol Diagn Ther ; 28(3): 329-337, 2024 May.
Article in English | MEDLINE | ID: mdl-38581611

ABSTRACT

INTRODUCTION: GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine. METHODS: Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands. RESULTS AND DISCUSSION: We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Molecular Dynamics Simulation , Tetrabenazine , Humans , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Tetrabenazine/therapeutic use , Mutation , Brain Diseases/drug therapy , Brain Diseases/genetics , Precision Medicine/methods , Signal Transduction/drug effects
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276008

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG), affecting children aged 4-7 years, is a rare, aggressive tumor that originates in the pons and then spreads to nearby tissue. DIPG is the leading cause of death for pediatric brain tumors due to its infiltrative nature and inoperability. Radiotherapy has only a palliative effect on stabilizing symptoms. In silico and preclinical studies identified ONC201 as a cytotoxic agent against some human cancer cell lines, including DIPG ones. A single-crystal X-ray analysis of the complex of the human mitochondrial caseinolytic serine protease type C (hClpP) and ONC201 (PDB ID: 6DL7) allowed hClpP to be identified as its main target. The hyperactivation of hClpP causes damage to mitochondrial oxidative phosphorylation and cell death. In some DIPG patients receiving ONC201, an acquired resistance was observed. In this context, a wide program was initiated to discover original scaffolds for new hClpP activators to treat ONC201-non-responding patients. Harmaline, a small molecule belonging to the chemical class of ß-carboline, was identified through Fingerprints for Ligands and Proteins (FLAP), a structure-based virtual screening approach. Molecular dynamics simulations and a deep in vitro investigation showed interesting information on the interaction and activation of hClpP by harmaline.

3.
Toxics ; 11(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38133348

ABSTRACT

We provide an extensive review of 17 independent and industry-funded studies targeting carbonyls in aerosol emissions of Heated Tobacco Products (HTPs), focusing on quality criteria based on the reproducibility of experiments, appropriate analytic methods, and puffing regimes. Most revised studies complied with these requirements, but some were unreproducible, while others failed to consider analytical variables that may have affected the results and/or produced unrealistic comparisons. We also provide a review of the literature on the physicochemical properties of heated tobacco and HTP aerosols, as well as the evaluation of HTPs by regulatory agencies, addressing various critiques of their relative safety profile. The outcomes from the revised studies and regulatory evaluations tend to agree with and converge to a general consensus that HTP aerosols expose users to significantly lower levels of toxicity than tobacco smoke.

4.
Plants (Basel) ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896069

ABSTRACT

Crocin, a glycoside carotenoid that exhibits several health benefits, is mainly obtained from saffron (Crocus sativus L.), whose quality and content of phytochemicals can be strongly affected by environmental conditions. Therefore, in this work, the crocin content and in vitro antioxidant activity of saffron extracts obtained from three different varieties (Greek, Sicilian, and Iranian saffron) were assessed. Crocin content in saffron extracts was quantified via ultra-performance liquid chromatography coupled with mass spectrometry. The antioxidant activity of saffron extracts was evaluated using the oxygen radical absorbance capacity (ORAC) assay and nitric oxide (NO) radical scavenging test. The Maillard reaction was used to assess anti-glycation activity. Although the Sicilian and Iranian saffron extracts contained higher amounts of crocin (128 ± 6 ng/mL and 126 ± 4 ng/mL, respectively) compared to the Greek extracts (111 ± 2 ng/mL), ORAC values (50.9 ± 0.5) and % NO inhibition (35.2 ± 0.2) were higher for the Greek variety, which displayed a total phenolic content about two-fold greater than that of the other two extracts. Sicilian and Greek saffron had similar anti-glycation activities, while Iranian saffron was less effective. These results suggest that the antioxidant activity of saffron extracts could be ascribed to their naturally occurring complex mixture of phytochemicals, deserving further investigation as supplements to prevent pathological conditions induced by radical species.

5.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298633

ABSTRACT

The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.


Subject(s)
Melanoma , Receptors, sigma , Humans , Apoptosis , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Signal Transduction , Receptors, sigma/genetics , Endoplasmic Reticulum Stress , Transcription Factor CHOP/metabolism , Activating Transcription Factor 4/metabolism , eIF-2 Kinase/metabolism
6.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175318

ABSTRACT

Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push-pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein-ACE2 binding.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
7.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770919

ABSTRACT

Brassica incana subsp. raimondoi is an endemic taxon present in a restricted area located on steep limestone cliffs at an altitude of about 500 m a.s.l. in eastern Sicily. In this research, for the first time, studies on the phytochemical profile, the antioxidant properties in cell-free and cell-based systems, the cytotoxicity on normal and cancer cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, and on Artemia salina Leach, were performed. The total phenolic, flavonoid, and condensed tannin contents of the leaf hydroalcoholic extract were spectrophotometrically determined. Ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) analysis highlighted the presence of several phenolic acids, flavonoids, and carotenoids, while High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) identified various kaempferol and isorhamnetin derivatives. The extract exhibited different antioxidant properties according to the five in vitro methods used. Cytotoxicity by MTT assay evidenced no impact on normal human fibroblasts (HFF-1) and prostate cancer cells (DU145), and cytotoxicity accompanied by necrotic cell death for colon cancer cells (CaCo-2) and hepatoma cells (HepG2), starting from 100 µg/mL and 500 µg/mL, respectively. No cytotoxic effects were detected by the A. salina lethality bioassay. In the H2O2-induced oxidative stress cell model, the extract counteracted cellular reactive oxygen species (ROS) production and preserved non-protein thiol groups (RSH) affected by H2O2 exposure in HepG2 cells. Results suggest the potential of B. incana subsp. raimondoi as a source of bioactive molecules.


Subject(s)
Antioxidants , Brassica , Humans , Antioxidants/chemistry , Hydrogen Peroxide , Chromatography, Liquid , Caco-2 Cells , Plant Extracts/chemistry , Tandem Mass Spectrometry , Flavonoids/pharmacology
8.
Biomed Pharmacother ; 158: 114141, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36542987

ABSTRACT

Diabetic neuropathy (DN) is a long-term complication of diabetes mellitus, affecting different periphery nerve systems including sensory and motor neurons. Hyperglycemia is the major cause of DN with symptoms such as weakness of balance or coordination, insensitivity to sensation, weakness of the muscles as well as numbness and pain in limbs Analgesic drug such as opioids can be effective to relief neuropathy pain but there is no effective treatment. Adiponectin is an anti-diabetic adipokine, which possesses insulin-sensitizing and neuroprotective effects. In this project, we aim to identify an agent which is dual acting to opioid and adiponectin receptors. Within a virtual screening repositioning campaign, a large collection of compounds with different structures comprehensive of adipoRon-like piperidine derivatives was screened by docking. Recently developed opioid receptor benzomorphanic agonists finally emerged as good ligands to adiponectin receptors showing some 2D and 3D structural similarities with AdipoRon. Particularly, we have identified (+)-MML1017, which has high affinity to the same binding domain of AdipoR1 and AdipoR2 as AdipoRon. Our western blot results indicate (+)-MML1017 activates AMPK phosphorylation through both adipoR1 and adipoR2 in neuronal cell line. Moreover, pretreatment of (+)-MML1017 can improve the cell viability with motor neurons under hyperglycermic conditions. The (+)-MML1017 also activates µ-opioid receptor cells in a concentration-dependent manner. Our study identified a novel compound having dual activity on opioid receptors and adiponectin receptors that may have analgesic effects and neuroprotective effects to treat diabetic neuropathy.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Neuroprotective Agents , Humans , Receptors, Adiponectin/metabolism , Analgesics, Opioid , Diabetic Neuropathies/drug therapy , Receptors, Opioid , Adiponectin/metabolism
9.
Pharmaceutics ; 14(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559338

ABSTRACT

The growing interest in natural bioactive molecules, as an approach to many pathological contexts, is widely justified by the necessity to overcome the disadvantageous benefit-risk ratio related to traditional therapies. Among them, mangiferin (MGF) shows promising beneficial properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. In this study, we aimed to investigate the antioxidant and anti-inflammatory properties of MGF on lipopolysaccharide (LPS)-induced lung NCI-H292 cells, focusing on its role against COVID-19 adsorption. In order to obtain this information, cells treated with LPS, with or without MGF, were analyzed performing wound healing, gene expression of inflammatory cytokines, GSH quantification, and JC-1 staining. Moreover, the inhibition of viral adsorption was evaluated microbiologically and the results were further confirmed by molecular docking analysis. In this regard, MGF downregulates the expression of several inflammatory factors, enhances GSH levels, promotes the wound healing rate, and restores the mitochondrial dysfunction caused by LPS. In addition, MGF significantly inhibits SARS-CoV-2 adsorption as shown by the gene expression of ACE2 and TMPRSS-2, and furtherly confirmed by microbiological and molecular modeling evaluation. Although more investigations are still needed, all data obtained constitute a solid background, demonstrating the cytoprotective role of MGF in inflammatory mechanisms including COVID-19 infection.

10.
Cells ; 11(10)2022 05 19.
Article in English | MEDLINE | ID: mdl-35626733

ABSTRACT

BACKGROUND: Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS: The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and ß-Coronavirus by the plaque reduction assay. RESULTS: The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS: The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.


Subject(s)
Breast Neoplasms , Herpesvirus 1, Human , Orobanche , Female , Humans , Antiviral Agents/therapeutic use , Breast Neoplasms/drug therapy , Herpesvirus 1, Human/physiology , MCF-7 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sulfhydryl Compounds/pharmacology , Virus Replication
11.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34827311

ABSTRACT

Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.

12.
J Clin Med ; 10(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070628

ABSTRACT

Although the epidemic caused by SARS-CoV-2 callings for international attention to develop new effective therapeutics, no specific protocol is yet available, leaving patients to rely on general and supportive therapies. A range of respiratory diseases, including pulmonary fibrosis, have been associated with higher iron levels that may promote the course of viral infection. Recent studies have demonstrated that some natural components could act as the first barrier against viral injury by affecting iron metabolism. Moreover, a few recent studies have proposed the combination of protease inhibitors for therapeutic use against SARS-CoV-2 infection, highlighting the role of viral protease in virus infectivity. In this regard, this review focuses on the analysis, through literature and docking studies, of a number of natural products able to counteract SARS-CoV-2 infection, acting both as iron chelators and protease inhibitors.

13.
Antibiotics (Basel) ; 10(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557378

ABSTRACT

The difficulty to treat resistant strains-related hospital-acquired infections (HAIs) promoted the study of phytoextracts, known sources of bioactive molecules. Accordingly, in the present study, the pharmacological activities of Juglans regia (L.) pellicle extract (WPE) were investigated. The antiviral effect was tested against Herpes simplex virus type 1 and 2, Poliovirus 1, Adenovirus 2, Echovirus 9, Coxsackievirus B1 through the plaque reduction assay. The antibacterial and antifungal activities were evaluated against medically important strains, by the microdilution method. DPPH and superoxide dismutase (SOD)s-like activity assays were used to determine the antioxidant effect. Besides, the extract was screened for cytotoxicity on Caco-2, MCF-7, and HFF1 cell lines by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The total phenolic and flavonoid contents were also evaluated. Interestingly, WPE inhibited Herpes simplex viruses (HSVs) replication, bacterial and fungal growth. WPE showed free radical scavenging capacity and inhibited superoxide anion formation in a dose-dependent manner. These effects could be attributed to the high content of phenols and flavonoids, which were 0.377 ± 0.01 mg GE/g and 0.292 ± 0.08 mg CE/g, respectively. Moreover, WPE was able to reduce Caco-2 cell viability, at both 48 h and 72 h. The promising results encourage further studies aimed to better elucidate the role of WPE in the prevention of human infectious diseases.

14.
Curr Pharm Des ; 27(10): 1323-1329, 2021.
Article in English | MEDLINE | ID: mdl-33302855

ABSTRACT

BACKGROUND: The evolution of the pandemic has burdened the national healthcare systems worldwide and at present, there is no preferred antiviral treatment for COVID-19. Recently, the SARS-Cov-2 protease structure was released that may be exploited in in-silico studies in order to conduct molecular docking analysis. METHODS: In particular, we compared the binding of twoantimalarial drugs, already in use, (i.e. chloroquine and hydroxychloroquine), which showed some potential clinical effects on COVID-19 patients, using ritonavir, lopinavir and darunavir as positive control tree antiviral recognized compounds. RESULTS: Our results showed that hydroxychloroquine but not chloroquine exhibited a significant binding activity to the main protease similar to that possessed by protease inhibitors tested for other viral infections. CONCLUSION: Our data suggest that hydroxychloroquine may exert additional direct antiviral activity compared to chloroquine. In the absence of clinical studies comparing the efficacy of these two compounds, hydroxychloroquine may offer additional effects and may be considered as the first choice.


Subject(s)
Antimalarials , COVID-19 , Pharmaceutical Preparations , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation , SARS-CoV-2
15.
Nat Prod Res ; 35(12): 2076-2081, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31397177

ABSTRACT

Juglans regia L. (common walnut) is a deciduous tree belonging to Juglandaceae family. Since ancient time, walnut was widely used in traditional medicine for its antioxidant, antidiabetic, antimicrobial, anti-inflammatory, anti-atherogenic and liver-protective effects. In this work, the antibacterial and anti-biofilm activities of walnuts pellicle extract against coagulase-negative staphylococci were evaluated. Qualitative chemical analysis was performed by the thin layer chromatography. UPLC-Ms/Ms was used to identify the chemical composition of J. regia extract. The total flavonoid and phenolic contents were determined by the Aluminium chloride and Folin-Ciocalteu methods, respectively. The extract showed antibacterial activity with MIC ranging from 3.60 to 461.75 µg/ml and MBC ranging from 461.75 to >461.75 µg/ml. Furthermore, it significantly reduced biofilm biomass and cell viability in a dose-dependent manner. Biological activities of J. regia extract may be due to its high flavonoid and phenolic contents. The obtained results are promising and they deserve further scientific investigations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Juglans/chemistry , Plant Extracts/pharmacology , Staphylococcus/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Chromatography, Liquid , Coagulase/analysis , Dose-Response Relationship, Drug , Flavonoids/analysis , Nuts/chemistry , Phenols/analysis , Plant Extracts/administration & dosage , Plant Extracts/analysis , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Staphylococcus/physiology , Tandem Mass Spectrometry
16.
ACS Chem Neurosci ; 11(24): 4111-4127, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33263393

ABSTRACT

Opioids are the gold standard drugs for the treatment of acute and chronic severe pain, although their serious side effects constitute a big limitation. In the search for new and safer drugs, 5-HT1AR agonists are emerging as potential candidates in pain relief therapy. In this work, we evaluated the affinity and activity of enantiomers of the two newly synthesized, potent 5-HT1AR agonists N-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]-2-[2-(pyridin-4-yl)phenoxy]ethan-1-ammonium hydrogenoxalate (rac-1) and N-((2,2-diphenyl-1,3-dioxolan-4-yl)methyl)-2-(2-(1-methyl-1H-imidazol-5-yl)phenoxy)ethan-1-ammonium hydrogenoxalate (rac-2) in vitro and in vivo. The role of chirality in the interaction with 5-HT1AR was evaluated by molecular docking. The activity of the rac-1 was tested in mouse models of acute pain (hot plate) and severe tonic nociceptive stimulation (intraplantar formalin test). Rac-1 was active in the formalin test with a reduction in paw licking in both phases at 10 mg/kg, and its effect was abolished by the selective 5-HT1AR antagonist, WAY-100635. The eutomer (S)-1, but not the racemate, was active during the hot plate test at 10 and 20 mg/kg, and this effect was abolished by 30 min treatment with WAY-100635 at 30 min. Similarly to 8-OH-DPAT, (S)-1 evoked a slow outward current and depressed spontaneous glutamatergic transmission in superficial dorsal horn neurons, more effectively than rac-1. The eutomer (S)-1 showed promising developability properties, such as high selectivity over 5-HT subtypes, no interaction with the µ receptors, and low hepato- and cardiotoxicity. Therefore, (S)-1 may represent a potential candidate for the treatment of acute and chronic pain without having the adverse effects that are commonly associated with the classic opioid drugs.


Subject(s)
Pharmaceutical Preparations , Receptor, Serotonin, 5-HT1A , Analgesics, Opioid/pharmacology , Animals , Mice , Molecular Docking Simulation , Pain
17.
Future Med Chem ; 12(22): 2001-2018, 2020 11.
Article in English | MEDLINE | ID: mdl-32972243

ABSTRACT

Background: Central and peripheral analgesia without adverse effects relies on the identification of µ-opioid agonists that are able to activate 'basal' antinociceptive pathways. Recently developed µ-selective benzomorphan agonists that are not antagonized by naloxone do not activate G-proteins and ß-arrestins. Which pathways do µ receptors activate? How can each of them be selectively activated? What role is played by allosteric binding sites? Methodology & results: Molecular modeling studies characterize the amino acid residues involved in the interaction with various classes of endogenous and exogenous ligands and with agonists and antagonists. Conclusions: Critical binding differences between various classes of agonists with different pharmacological profiles have been identified. MML series binding poses may be relevant in the search for an antinociception agent without side effects.


Subject(s)
Analgesics, Opioid/pharmacology , Molecular Dynamics Simulation , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Analgesics, Opioid/chemistry , Binding Sites/drug effects , Humans , Ligands , Molecular Structure
18.
J Chem Inf Model ; 60(10): 5162-5171, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32818373

ABSTRACT

Functional antitumor vaccine constructs are the basis for active tumor immunotherapy, which is useful in the treatment of many types of cancers. MUC1 is one key glycoprotein for targeting and designing new strategies for multicomponent vaccines. Two self-adjuvant tetravalent vaccine candidates were prepared by clustering four or eight PDTRP MUC1 core epitope sequences on calixarene scaffolds. In this work, the different activities of two molecules with calix[4]arene and calix[8]arene skeleton are rationalized. Quantum mechanics, docking, and molecular dynamics structural optimization were first carried out followed by metadynamics to calculate the energy profiles. Further insights were obtained by complementarity studies of molecular fields. The molecular modeling results are in strong agreement with the experimental in vivo immunogenicity data. In conclusion, the overall data shows that, in the designing of anticancer vaccines, scaffold flexibility has a pivotal role in obtaining a suitable electrostatic, hydrophobic, and steric complementarity with the biological target.


Subject(s)
Calixarenes , Neoplasms , Vaccines , Humans , Molecular Dynamics Simulation , Mucin-1 , Static Electricity
19.
Nat Prod Res ; 34(22): 3234-3238, 2020 Nov.
Article in English | MEDLINE | ID: mdl-30672323

ABSTRACT

Orobanche crenata Forssk. (Orobanchaceae) is a holoparasitic plant noxious to legumes. Orobanchaceae are well known in traditional medicine for their hypotensive, antihyperglycemic, antispasmodic, analgesic and antimicrobial effects. In this work, the biological activities of the acetonic leaves extract were evaluated. Qualitative chemical analysis was determined through thin layer chromatography. Total phenols and flavonoids content was obtained by the Folin-Ciocalteu and the Aluminium chloride colorimetric methods, respectively. The antimicrobial activity was performed by the broth microdilution method. The extract showed antibacterial activity, particularly against Gram-positive strains, with MIC ranging from 376.00 to 3011.00 µg/ml. Besides, it exhibited antifungal effects on Candida spp. with MIC ranging from 94.10 to 3011.00 µg/ml. In addition, O. crenata inhibited superoxide anion formation and showed a DPPH quenching capacity, particularly at 80 µg/ml. Interestingly, our results are promising thus indicating the importance of O. crenata as a significant source of biologically active natural compounds.


Subject(s)
Orobanche/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Candida/drug effects , Flavonoids/analysis , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Phenols/analysis , Plant Leaves/chemistry , Superoxides/chemistry , Superoxides/metabolism
20.
Int J Mol Sci ; 20(13)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261958

ABSTRACT

Natural bioactive compounds may be used in obese patients because of their ability to impact on various key mechanisms involved in the complex pathophysiological mechanisms of such condition. The aim of this study was to investigate the effect of a Mangifera indica L. leaf extract (MLE) on adipogenic differentiation of murine preadipocyte cells. 3T3-L1 cells were treated during their differentiation with various concentrations of (Mangifera indica L.) leaves extract (MLE) (750, 380, 150, 75 and 35 µg) in order to assess their lipid content, adiponectin production, expression profile of genes involved in lipid metabolism, oxidative stress and inflammation. Our results showed that MLE was particularly enriched in polyphenols (46.30 ± 0.083 mg/g) and that pharmacological treatment of cells resulted in a significant increase of adiponectin levels and reduction of intracellular lipid content. Consistently with these results, MLE resulted in a significant decrease of the expression of genes involved in lipid metabolism (FAS, PPARG, DGAT1, DGAT2, and SCD-1). In conclusion, our results suggest that MLE may represent a possible pharmacological tool for obese or metabolic syndrome patients.


Subject(s)
Adipocytes/drug effects , Adipogenesis , Adiponectin/metabolism , Antioxidants/pharmacology , Mangifera/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Antioxidants/chemistry , Lipid Metabolism , Mice , Oxidative Stress , Plant Extracts/chemistry , Plant Leaves/chemistry , Polyphenols/analysis , Xanthones/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...