Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Clin Genet ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561231

ABSTRACT

Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.

2.
Circ Genom Precis Med ; 17(1): e004285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059363

ABSTRACT

BACKGROUND: Few clinical data are available on NEXN mutation carriers, and the gene's involvement in cardiomyopathies or sudden death has not been fully established. Our objectives were to assess the prevalence of putative pathogenic variants in NEXN and to describe the phenotype and prognosis of patients carrying the variants. METHODS: DNA samples from consecutive patients with cardiomyopathy or sudden cardiac death/sudden infant death syndrome/idiopathic ventricular fibrillation were sequenced with a custom panel of genes. Index cases carrying at least one putative pathogenic variant in the NEXN gene were selected. RESULTS: Of the 9516 index patients sequenced, 31 were carriers of a putative pathogenic variant in NEXN only, including 2 with double variants and 29 with a single variant. Of the 29 unrelated probands with a single variant (16 males; median age at diagnosis, 32.0 [26.0-49.0] years), 21 presented with dilated cardiomyopathy (prevalence, 0.33%), and 3 presented with hypertrophic cardiomyopathy (prevalence, 0.14%). Three patients had idiopathic ventricular fibrillation, and there were 2 cases of sudden infant death syndrome (prevalence, 0.46%). For patients with dilated cardiomyopathy, the median left ventricle ejection fraction was 37.5% (26.25-50.0) at diagnosis and improved with treatment in 13 (61.9%). Over a median follow-up period of 6.0 years, we recorded 3 severe arrhythmic events and 2 severe hemodynamic events. CONCLUSIONS: Putative pathogenic NEXN variants were mainly associated with dilated cardiomyopathy; in these individuals, the prognosis appeared to be relatively good. However, severe and early onset phenotypes were also observed-especially in patients with double NEXN variants. We also detected NEXN variants in patients with hypertrophic cardiomyopathy and sudden infant death syndrome/idiopathic ventricular fibrillation, although a causal link could not be established.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Sudden Infant Death , Ventricular Fibrillation , Male , Infant , Humans , Adult , Middle Aged , Cardiomyopathy, Dilated/genetics , Prevalence , Cardiomyopathies/diagnosis , Phenotype , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/complications , Death, Sudden, Cardiac/etiology , Prognosis , Microfilament Proteins/genetics
3.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37974505

ABSTRACT

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Subject(s)
Aneuploidy , Chromosome Disorders , Chromosomes, Human, Pair 22 , Eye Abnormalities , Heart Defects, Congenital , Humans , Retrospective Studies , In Situ Hybridization, Fluorescence , Chromosomes, Human, Pair 22/genetics , Heart Defects, Congenital/genetics
4.
Clin Genet ; 104(1): 63-72, 2023 07.
Article in English | MEDLINE | ID: mdl-37209000

ABSTRACT

Cardiomyopathies are diseases of the heart muscle with variable clinical expressivity. Most of forms are inherited as dominant trait, and with incomplete penetrance until adulthood. Severe forms of cardiomyopathies were observed during the antenatal period with a pejorative issue leading to fetal death or medical interruption of pregnancy. Variable phenotypes and genetic heterogeneity make etiologic diagnosis difficult. We report 11 families (16 cases) whose unborn, newborn or infant with early onset cardiomyopathies. Detailed morphological and histological examinations of hearts were implemented, as well as genetic analysis on a cardiac targeted NGS panel. This strategy allowed the identification of the genetic cause of the cardiomyopathy in 8/11 families. Compound heterozygous mutations in dominant adulthood cardiomyopathy genes were found in two, pathogenic variants in co-dominant genes in one, de novo mutations in 5 including a germline mosaicism in one family. Parental testing was systematically performed to detect mutation carriers, and to manage cardiological surveillance and propose a genetic counseling. This study highlights the great diagnostic value of the genetic testing of severe antenatal cardiomyopathy both for genetic counseling and to detect presymptomatic parents at higher risk of developing cardiomyopathy.


Subject(s)
Cardiomyopathies , Pregnancy , Humans , Female , Cardiomyopathies/diagnosis , Genetic Testing , Mutation , Phenotype , Genetic Counseling
5.
Front Genet ; 14: 1099995, 2023.
Article in English | MEDLINE | ID: mdl-37035737

ABSTRACT

Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.

6.
Prenat Diagn ; 43(6): 734-745, 2023 06.
Article in English | MEDLINE | ID: mdl-36914926

ABSTRACT

OBJECTIVE: We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes. METHODS: We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France. RESULTS: 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated. CONCLUSION: This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs.


Subject(s)
Williams Syndrome , Humans , Female , Pregnancy , Williams Syndrome/diagnostic imaging , Williams Syndrome/genetics , Williams Syndrome/complications , DNA Copy Number Variations , Retrospective Studies , Fetal Growth Retardation , Ultrasonography
7.
Gynecol Obstet Fertil Senol ; 51(7-8): 367-371, 2023.
Article in French | MEDLINE | ID: mdl-36940866

ABSTRACT

OBJECTIVES: The management for isolated increased nuchal translucency (NT) in the first trimester with a normal karyotype and normal Chromosomal Microarray Analysis (CMA) is not consensual. The aim was to perform a survey among the Pluridisciplinary Centers for Prenatal Diagnosis (CPDPN) in France regarding their management of increased NT in the first trimester. METHODS: We conducted a multicenter descriptive survey between September 2021 and October 2021 among the 46 CPDPNs of France. RESULTS: The response rate was 56.5% (n = 26/46). The NT thickness threshold for which invasive diagnosis testing is performed is 3.0mm in 23.1% of centers (n = 6/26) and 3.5mm in 76.9% of centers (n = 20/26). A CMA was performed alone in 26.9% of centers (n = 7/26) while 7.7% of centers (n = 2/26) did not perform a CMA. The gestational age for the first reference ultrasound scan was 16 to 18 WG in 88.5% of centers (n = 23/26), while it was not performed before 22 WG in 11.5% of centers (n = 3/26). Fetal echocardiography is proposed systematically in 73.1% of centers (n = 19/26). CONCLUSION: There is heterogeneity in the management of increased NT in the first trimester among the CPDPNs in France. In case of increased NT on first trimester ultrasound scan, the NT thickness threshold for which invasive diagnosis testing is performed varies from 3.0 mm or 3.5mm depending on the center. Moreover, CMA and early reference morphological ultrasound scan between 16 and 18 WG were not systematically performed, despite the current data suggesting their interest.


Subject(s)
Nuchal Translucency Measurement , Prenatal Diagnosis , Pregnancy , Female , Humans , Pregnancy Trimester, First , Gestational Age , Microarray Analysis , Ultrasonography, Prenatal
8.
Genet Med ; 25(4): 100018, 2023 04.
Article in English | MEDLINE | ID: mdl-36681873

ABSTRACT

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Subject(s)
Intellectual Disability , Humans , Exome Sequencing , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Genotype
9.
Cells ; 12(2)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672271

ABSTRACT

A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/ß with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.


Subject(s)
Cardiomyopathies , Chromosomes , Female , Male , Mice , Animals , Cardiomyopathies/genetics , Chromatin , Phenotype
10.
J Med Genet ; 60(6): 620-626, 2023 06.
Article in English | MEDLINE | ID: mdl-36368868

ABSTRACT

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Subject(s)
Cleft Lip , Cleft Palate , Goldenhar Syndrome , Humans , Animals , Goldenhar Syndrome/genetics , Zebrafish/genetics , DNA Copy Number Variations/genetics , Otx Transcription Factors/genetics
11.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36196855

ABSTRACT

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Subject(s)
Abnormalities, Multiple , Microcephaly , Humans , Comparative Genomic Hybridization , Abnormalities, Multiple/genetics , Microcephaly/genetics , Syndrome , Genetic Association Studies
13.
J Med Genet ; 59(5): 417-427, 2022 05.
Article in English | MEDLINE | ID: mdl-35110414

ABSTRACT

Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.


Subject(s)
Goldenhar Syndrome , Animals , Branchial Region , DNA Copy Number Variations , Goldenhar Syndrome/diagnosis , Goldenhar Syndrome/genetics , Humans
14.
Nat Genet ; 54(1): 62-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34903892

ABSTRACT

The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.


Subject(s)
Biological Evolution , Body Patterning , Gene Regulatory Networks , Metalloproteases , Animals , Humans , Body Patterning/genetics , Body Patterning/physiology , Cilia/genetics , Loss of Function Mutation , Metalloproteases/genetics , Metalloproteases/physiology , Proteins/genetics , Proteins/physiology , Vertebrates/genetics
15.
Nucleic Acids Res ; 49(19): 11241-11256, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34634812

ABSTRACT

The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromatin/metabolism , HIV Integrase/genetics , Histones/genetics , Host-Pathogen Interactions/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Chromatin/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HIV Integrase/metabolism , Histones/metabolism , Humans , K562 Cells , Primary Cell Culture , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Transcription Factors/metabolism
16.
Eur J Hum Genet ; 29(7): 1158-1163, 2021 07.
Article in English | MEDLINE | ID: mdl-33958741

ABSTRACT

Hereditary spastic paraplegias (HSP) are heterogeneous disorders, with more than 70 causative genes. Variants in SPAST are the most frequent genetic etiology and are responsible for spastic paraplegia type 4 (SPG4). Age at onset can vary, even between patients from the same family, and incomplete penetrance is described. Somatic mosaicism is extremely rare with only three patients reported in the literature. We report here SPAST mosaic variants in four unrelated patients. We confirm that mosaicism in SPAST is a very rare event with only four identified cases on more than 300 patients with a SPAST variant previously described by our clinical diagnostic laboratory.


Subject(s)
Heterozygote , Mosaicism , Mutation , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Alleles , Child , Comparative Genomic Hybridization , Female , France , Gene Frequency , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Male , Middle Aged , Pedigree , Phenotype
17.
Hum Genet ; 140(6): 933-944, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33475861

ABSTRACT

Goldenhar syndrome or oculo-auriculo-vertebral spectrum (OAVS) is a complex developmental disorder characterized by asymmetric ear anomalies, hemifacial microsomia, ocular and vertebral defects. We aimed at identifying and characterizing a new gene associated with OAVS. Two affected brothers with OAVS were analyzed by exome sequencing that revealed a missense variant (p.(Asn358Ser)) in the EYA3 gene. EYA3 screening was then performed in 122 OAVS patients that identified the same variant in one individual from an unrelated family. Segregation assessment in both families showed incomplete penetrance and variable expressivity. We investigated this variant in cellular models to determine its pathogenicity and demonstrated an increased half-life of the mutated protein without impact on its ability to dephosphorylate H2AFX following DNA repair pathway induction. Proteomics performed on this cellular model revealed four significantly predicted upstream regulators which are PPARGC1B, YAP1, NFE2L2 and MYC. Moreover, eya3 knocked-down zebrafish embryos developed specific craniofacial abnormalities corroborating previous animal models and supporting its involvement in the OAVS. Additionally, EYA3 gene expression was deregulated in vitro by retinoic acid exposure. EYA3 is the second recurrent gene identified to be associated with OAVS. Moreover, based on protein interactions and related diseases, we suggest the DNA repair as a key molecular pathway involved in craniofacial development.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Goldenhar Syndrome/genetics , Mutation, Missense , Protein Tyrosine Phosphatases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Child , Child, Preschool , DNA-Binding Proteins/deficiency , Embryo, Nonmammalian , Female , Gene Expression Regulation , Goldenhar Syndrome/metabolism , Goldenhar Syndrome/pathology , Histones/genetics , Histones/metabolism , Humans , Male , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pedigree , Penetrance , Protein Tyrosine Phosphatases/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Siblings , Transcription Factors/genetics , Transcription Factors/metabolism , Exome Sequencing , YAP-Signaling Proteins , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
18.
Mol Genet Genomic Med ; 8(10): e1375, 2020 10.
Article in English | MEDLINE | ID: mdl-32738032

ABSTRACT

BACKGROUND: The Oculo-Auriculo-Vertebral Spectrum (OAVS) or Goldenhar Syndrome is an embryonic developmental disorder characterized by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical heterogeneity of this spectrum and its incomplete penetrance limited the molecular diagnosis. In this study, we describe a novel causative gene, ZYG11B. METHODS: A sporadic case of OAVS was analyzed by whole exome sequencing in trio strategy. The identified candidate gene, ZYG11B, was screened in 143 patients by next generation sequencing. Overexpression and immunofluorescence of wild-type and mutated ZYG11B forms were performed in Hela cells. Moreover, morpholinos were used for transient knockdown of its homologue in zebrafish embryo. RESULTS: A nonsense de novo heterozygous variant in ZYG11B, (NM_024646, c.1609G>T, p.Glu537*) was identified in a single OAVS patient. This variant leads in vitro to a truncated protein whose subcellular localization is altered. Transient knockdown of the zebrafish homologue gene confirmed its role in craniofacial cartilages architecture and in notochord development. Moreover, ZYG11B expression regulates a cartilage master regulator, SOX6, and is regulated by Retinoic Acid, a known developmental toxic molecule leading to clinical features of OAVS. CONCLUSION: Based on genetic, cellular and animal model data, we proposed ZYG11B as a novel rare causative gene for OAVS.


Subject(s)
Cell Cycle Proteins/genetics , Goldenhar Syndrome/genetics , Adolescent , Animals , Cell Cycle Proteins/metabolism , Codon, Nonsense , Exome , Goldenhar Syndrome/metabolism , Goldenhar Syndrome/pathology , HeLa Cells , Heterozygote , Humans , Male , Notochord/embryology , Notochord/metabolism , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism , Tretinoin/metabolism , Zebrafish
19.
Clin Genet ; 98(4): 384-389, 2020 10.
Article in English | MEDLINE | ID: mdl-32639022

ABSTRACT

Oculo-auriculo-vertebral spectrum (OAVS) [MIM:164210], or Goldenhar syndrome, is a developmental disorder associating defects of structures derived from the first and second branchial arches. The genetic origin of OAVS is supported by the description of rare deleterious variants in a few causative genes, and several chromosomal copy number variations. We describe here a large family with eight male members affected by a mild form of the spectrum, mostly auricular defects, harboring a hemizygous ZIC3 variant detected by familial exome sequencing: c.159_161dup p.(Ala55dup), resulting in an expansion of the normal 10 consecutive alanine residues to 11 alanines. Segregation analysis shows its presence in all the affected individuals, with a recessive X-linked transmission. Whole-genome sequencing performed in another affected male allowed to exclude linkage disequilibrium between this ZIC3 variant and another potential pathogenic variant in this family. Furthermore, by screening of a cohort of 274 OAVS patients, we found 1 male patient carrying an expansion of 10 to 12 alanines, a variant previously reported in patient presenting with VACTERL. Loss-of-function variants of ZIC3 are causing heterotaxy or cardiac malformations. These alanine expansion variants could have a different impact on the protein and thereby resulting in a different phenotype within the OAVS/VACTERL.


Subject(s)
Anal Canal/abnormalities , Esophagus/abnormalities , Genetic Diseases, X-Linked/genetics , Genetic Predisposition to Disease , Goldenhar Syndrome/genetics , Heart Defects, Congenital/genetics , Homeodomain Proteins/genetics , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities , Transcription Factors/genetics , Adolescent , Adult , Alanine/genetics , Anal Canal/pathology , Branchial Region/diagnostic imaging , Branchial Region/pathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Esophagus/pathology , Female , Genetic Diseases, X-Linked/pathology , Goldenhar Syndrome/pathology , Heart Defects, Congenital/pathology , Humans , Infant , Kidney/pathology , Limb Deformities, Congenital/pathology , Loss of Function Mutation/genetics , Male , Repetitive Sequences, Amino Acid/genetics , Spine/pathology , Trachea/pathology , Whole Genome Sequencing , Young Adult
20.
Hum Mutat ; 41(9): 1615-1628, 2020 09.
Article in English | MEDLINE | ID: mdl-32579715

ABSTRACT

Serine biosynthesis disorders comprise a spectrum of very rare autosomal recessive inborn errors of metabolism with wide phenotypic variability. Neu-Laxova syndrome represents the most severe expression and is characterized by multiple congenital anomalies and pre- or perinatal lethality. Here, we present the mutation spectrum and a detailed phenotypic analysis in 15 unrelated families with severe types of serine biosynthesis disorders. We identified likely disease-causing variants in the PHGDH and PSAT1 genes, several of which have not been reported previously. Phenotype analysis and a comprehensive review of the literature corroborates the evidence that serine biosynthesis disorders represent a continuum with varying degrees of phenotypic expression and suggest that even gradual differences at the severe end of the spectrum may be correlated with particular genotypes. We postulate that the individual residual enzyme activity of mutant proteins is the major determinant of the phenotypic variability, but further functional studies are needed to explore effects at the enzyme protein level.


Subject(s)
Abnormalities, Multiple/genetics , Brain Diseases/genetics , Fetal Growth Retardation/genetics , Genetic Association Studies , Ichthyosis/genetics , Limb Deformities, Congenital/genetics , Microcephaly/genetics , Phosphoglycerate Dehydrogenase/genetics , Transaminases/genetics , Female , Fetus , Humans , Infant, Newborn , Male , Mutation , Serine/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...