Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 382(6666): 109-113, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797025

ABSTRACT

Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.


Subject(s)
Bacterial Proteins , Entomoplasmataceae , Ribonucleotide Reductases , Electron Transport , Protons , Ribonucleotide Reductases/chemistry , Crystallography, X-Ray/methods , Entomoplasmataceae/enzymology , Catalytic Domain , Bacterial Proteins/chemistry
2.
ACS Omega ; 8(24): 21438-21449, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360476

ABSTRACT

Despite being involved in several human diseases, metalloenzymes are targeted by a small percentage of FDA-approved drugs. Development of novel and efficient inhibitors is required, as the chemical space of metal binding groups (MBGs) is currently limited to four main classes. The use of computational chemistry methods in drug discovery has gained momentum thanks to accurate estimates of binding modes and binding free energies of ligands to receptors. However, exact predictions of binding free energies in metalloenzymes are challenging due to the occurrence of nonclassical phenomena and interactions that common force field-based methods are unable to correctly describe. In this regard, we applied density functional theory (DFT) to predict the binding free energies and to understand the structure-activity relationship of metalloenzyme fragment-like inhibitors. We tested this method on a set of small-molecule inhibitors with different electronic properties and coordinating two Mn2+ ions in the binding site of the influenza RNA polymerase PAN endonuclease. We modeled the binding site using only atoms from the first coordination shell, hence reducing the computational cost. Thanks to the explicit treatment of electrons by DFT, we highlighted the main contributions to the binding free energies and the electronic features differentiating strong and weak inhibitors, achieving good qualitative correlation with the experimentally determined affinities. By introducing automated docking, we explored alternative ways to coordinate the metal centers and we identified 70% of the highest affinity inhibitors. This methodology provides a fast and predictive tool for the identification of key features of metalloenzyme MBGs, which can be useful for the design of new and efficient drugs targeting these ubiquitous proteins.

3.
J Chem Theory Comput ; 15(3): 1863-1874, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30768902

ABSTRACT

Building upon the OPLS3 force field we report on an enhanced model, OPLS3e, that further extends its coverage of medicinally relevant chemical space by addressing limitations in chemotype transferability. OPLS3e accomplishes this by incorporating new parameter types that recognize moieties with greater chemical specificity and integrating an on-the-fly parametrization approach to the assignment of partial charges. As a consequence, OPLS3e leads to greater accuracy against performance benchmarks that assess small molecule conformational propensities, solvation, and protein-ligand binding.


Subject(s)
Molecular Docking Simulation , Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thermodynamics , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Humans , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Quantum Theory
4.
J Comput Aided Mol Des ; 29(12): 1109-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26572910

ABSTRACT

In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Quantum Theory , Receptors, Mineralocorticoid/chemistry
5.
J Am Chem Soc ; 136(38): 13399-409, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25153930

ABSTRACT

The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a µ-hydroxo/bis-µ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the µ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.


Subject(s)
Chlamydia trachomatis/enzymology , Geobacillus/enzymology , Mycobacterium tuberculosis/enzymology , Oxidoreductases/chemistry , Ribonucleotide Reductases/chemistry , Chlamydia trachomatis/chemistry , Electron Spin Resonance Spectroscopy , Geobacillus/chemistry , Iron/chemistry , Manganese/chemistry , Models, Molecular , Mycobacterium tuberculosis/chemistry , Photochemical Processes , Quantum Theory
6.
J Chem Inf Model ; 54(3): 818-25, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24456077

ABSTRACT

Scoring potency is a main challenge for structure based drug design. Inductive effects of subtle variations in the ligand are not possible to accurately predict by classical computational chemistry methods. In this study, the problem of predicting potency of ligands with electronic variations participating in key interactions with the protein was addressed. The potency was predicted for a large set of cyclic amidine and guanidine cores extracted from ß-secretase (BACE-1) inhibitors. All cores were of similar size and had equal interaction motifs but were diverse with respect to electronic substitutions. A density functional theory approach, in combination with a representation of the active site of a protein using only key residues, was shown to be predictive. This computational approach was used to guide and support drug design, within the time frame of a normal drug discovery design cycle.


Subject(s)
Amidines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Guanidine/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amidines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Computational Biology , Enzyme Inhibitors/pharmacology , Guanidine/pharmacology , Humans , Models, Biological , Models, Molecular
7.
Proc Natl Acad Sci U S A ; 110(43): 17189-94, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24101498

ABSTRACT

Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn(II) < Fe(II) < Ni(II) < Co(II) < Cu(II) > Zn(II)). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from Mn(II) and Fe(II) in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds Fe(II) over Mn(II) as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.


Subject(s)
Ether/chemistry , Metalloproteins/chemistry , Metals/chemistry , Protein Multimerization , Algorithms , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Binding, Competitive , Catalysis , Catalytic Domain , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ether/metabolism , Geobacillus/enzymology , Geobacillus/genetics , Iron/chemistry , Iron/metabolism , Manganese/chemistry , Manganese/metabolism , Metalloproteins/metabolism , Metals/metabolism , Models, Chemical , Models, Molecular , Oxidation-Reduction , Oxygen/metabolism , Protein Binding , Protein Structure, Tertiary , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism
8.
Inorg Chem ; 52(8): 4173-84, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23537220

ABSTRACT

Activation of manganese-dependent class Ib ribonucleotide reductase by hydrogen peroxide was modeled using B3LYP* hybrid density functional theory. Class Ib ribonucleotide reductase R2 subunit (R2F) does not react with molecular oxygen. Instead R2F is proposed to react with H2O2 or HO2(-), provided by the unusual flavodoxin protein NrdI, to generate the observed manganese(III) manganese(III) tyrosyl-radical state. On the basis of the calculations, an energetically feasible reaction mechanism is suggested for activation by H2O2, which proceeds through two reductive half-reactions. In the first reductive half-reaction, H2O2 is cleaved with a barrier of 13.1 kcal mol(-1) [Mn(II)Mn(II) → Mn(III)Mn(III)], and in the second reductive half-reaction, H2O2 is cleaved with a barrier of 17.0 kcal mol(-1) [Mn(III)Mn(III) → Mn(IV)Mn(IV)]. Tyrosyl-radical formation from both the Mn(IV)Mn(IV) state and a Mn(III)Mn(IV) state, where an electron and proton have been taken up, is both kinetically and thermodynamically accessible. Hence, chemically, H2O2 is a possible oxidant for the manganese-dependent R2F. The selectivity between the second reductive half-reaction and a competing oxidative reaction, as in manganese catalase, may be the time scale for the availability of H2O2. The role of NrdI may be to provide H2O2 on the correct time scale.


Subject(s)
Chlamydia/enzymology , Hydrogen Peroxide/metabolism , Manganese/metabolism , Ribonucleotide Reductases/metabolism , Catalytic Domain , Chlamydia/metabolism , Chlamydia Infections/microbiology , Enzyme Activation , Models, Molecular , Oxidation-Reduction , Thermodynamics
9.
J Biol Inorg Chem ; 17(3): 363-73, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22083102

ABSTRACT

Two-electron chemistry with an iron dimer, a manganese dimer, and a manganese-iron dimer as a catalyst has been modeled using B3LYP* hybrid density functional theory. The recently discovered MnFe proteins form (at least) two functionally distinct groups, performing radical generation (class Ic ribonucleotide reductase subunit II) and substrate oxidations (subunit II-like ligand-binding oxidases, R2lox), respectively. Proteins from the latter group appear to be functionally similar to the diiron carboxylate proteins that perform two-electron oxidations of substrates, such as methane monooxygenase. To qualitatively determine the potential role of a MnFe center in R2lox, methane hydroxylation with the MnFe heterodimer and with the FeFe and MnMn homodimers is studied. The redox potential of the active state of the Mn(IV)Fe(IV) heterodimer is about 7 kcal mol(-1) lower than that of the active state of the Fe(IV)Fe(IV) homodimer, leading to a high barrier for the rate-limiting hydrogen abstraction with the MnFe site. If the entropy loss is not included, the barriers are lower, and the MnFe heterodimer can therefore have a role in R2lox as an oxidase for larger substrates exergonically bound to the protein. A MnMn center has a high barrier both with and without entropy loss. The higher stability of Fe(IV) in the presence of Mn(IV) in the other site compared with a second Fe(IV) suggests an explanation for the presence of the MnFe site in R2lox: to provide a metal center that is capable of two-electron chemistry, and which is more stable and less sensitive to external reductants than an Fe(IV)Fe(IV) site.


Subject(s)
Electrons , Iron/chemistry , Manganese/chemistry , Quantum Theory , Dimerization , Organometallic Compounds/chemistry , Oxygenases/chemistry , Ribonucleotide Reductases/chemistry
10.
J Biol Inorg Chem ; 16(4): 553-65, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21258828

ABSTRACT

The oxygen cleavage in Chlamydia trachomatis ribonucleotide reductase (RNR) has been studied using B3LYP* hybrid density functional theory. Class Ic C. trachomatis RNR lacks the radical-bearing tyrosine, crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)-Tyr(rad) active state, C. trachomatis RNR has a mixed Mn(IV)Fe(III) metal center in subunit II (R2). A mixed MnFe metal center has never been observed as a radical cofactor before. The active state is generated by reductive oxygen cleavage at the metal site. On the basis of calculated barriers for oxygen cleavage in C. trachomatis R2 and R2 from Escherichia coli with a diiron, a mixed manganese-iron, and a dimanganese center, conclusions can be drawn about the effect of changing metals in R2. The oxygen cleavage is found to be governed by two factors: the redox potentials of the metals and the relative stability of the different peroxides. Mn(IV) has higher stability than Fe(IV), and the barrier is therefore lower with a mixed metal center than with a diiron center. With a dimanganese center, an asymmetric peroxide is more stable than the symmetric peroxide, and the barrier therefore becomes too high. Calculated proton-coupled redox potentials are compared to identify three possible R2 active states, the Fe(III)Fe(III)-Tyr(rad) state, the Mn(IV)Fe(III) state, and the Mn(IV)Mn(IV) state. A tentative energy profile of the thermodynamics of the radical transfer from R2 to subunit I is constructed to illustrate how the stability of the active states can be understood from a thermodynamical point of view.


Subject(s)
Chlamydia trachomatis/enzymology , Iron/metabolism , Manganese/metabolism , Oxygen/metabolism , Ribonucleotide Reductases/metabolism , Deoxyribonucleotides/metabolism , Models, Molecular , Nucleic Acid Conformation , Ribonucleotides/metabolism , Stereoisomerism
11.
Biochemistry ; 48(9): 1878-87, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19220003

ABSTRACT

The active center of Chlamydia trachomatis (Ct) ribonucleotide reductase (RNR) has been studied using B3LYP hybrid density functional theory. Class Ic Ct RNR lacks the radical-bearing tyrosine that is crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)Tyr(rad) active state in conventional class I, Ct RNR has Mn(IV)Fe(III) at the metal center of subunit II. Based on calculated (H(+), e(-))-binding energies for Ct R2, iron-substituted Ct R2, and R2 from Escherichia coli (Ec), an explanation is proposed for why the enzyme needs this novel metal center. Mn(IV) is shown to be an equally strong oxidant as the tyrosyl radical in Ec R2. Fe(IV), however, is a much too strong oxidant and would therefore not be possible in the active cofactor. The structure of the catalytic center of the active state, such as protonation state and position of Mn, is discussed. Ct R2 has a different ligand structure than conventional class I R2 with a fourth Glu (like MMO) instead of three Glu and one Asp. Calculations indicate that, in the presence of Tyr, Glu at this position is less flexible than Asp, whereas with Phe both Glu and Asp are equally flexible. This may be a reason why conventional class I RNR has an Asp, while Ct R2, lacking the tyrosine, has a Glu.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/enzymology , Manganese/chemistry , Ribonucleotide Reductases/chemistry , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Bacterial Proteins/metabolism , Binding Sites , Glutamine/chemistry , Glutamine/metabolism , Iron/chemistry , Iron/metabolism , Manganese/metabolism , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Protons , Ribonucleotide Reductases/metabolism , Thermodynamics , Tyrosine/chemistry , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...