Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Commun Biol ; 5(1): 1348, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482174

ABSTRACT

Canine atopic dermatitis is an inflammatory skin disease with clinical similarities to human atopic dermatitis. Several dog breeds are at increased risk for developing this disease but previous genetic associations are poorly defined. To identify additional genetic risk factors for canine atopic dermatitis, we here apply a Bayesian mixture model adapted for mapping complex traits and a cross-population extended haplotype test to search for disease-associated loci and selective sweeps in four dog breeds at risk for atopic dermatitis. We define 15 associated loci and eight candidate regions under selection by comparing cases with controls. One associated locus is syntenic to the major genetic risk locus (Filaggrin locus) in human atopic dermatitis. One selection signal in common type Labrador retriever cases positions across the TBC1D1 gene (body weight) and one signal of selection in working type German shepherd controls overlaps the LRP1B gene (brain), near the KYNU gene (psoriasis). In conclusion, we identify candidate genes, including genes belonging to the same biological pathways across multiple loci, with potential relevance to the pathogenesis of canine atopic dermatitis. The results show genetic similarities between dog and human atopic dermatitis, and future across-species genetic comparisons are hereby further motivated.


Subject(s)
Dermatitis, Atopic , Dogs , Animals , Dogs/genetics , Bayes Theorem , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Risk Factors
2.
J Feline Med Surg ; 24(12): e481-e489, 2022 12.
Article in English | MEDLINE | ID: mdl-36409551

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the association between meningeal enhancement (MgE) and cerebrospinal fluid (CSF) analysis results, their individual association with bacteriology results from affected ear samples and whether these test results influenced clinicians' therapeutic choice in cats with otitis media and interna (OMI). METHODS: This was a multicentre retrospective study carried out over an 8-year period. Cats diagnosed with OMI, with or without a nasopharyngeal polyp, leading to peripheral vestibular signs were included. Only cats for which MRI with postcontrast T1-weighted sequences and CSF analyses available were included. Cats with intra-axial MRI lesions or empyema were excluded. RESULTS: Fifty-eight cats met the inclusion criteria. MgE was reported in 26/58 cases, of which nine had an abnormal CSF result (increased total nucleated cell count [TNCC] or total protein); 32/58 cases had no MgE, of which 10 showed abnormal CSF results. There was no association between bacteriology results (external ear canal or bulla) and MgE or abnormal CSF results. CSF abnormalities were statistically significantly more common in acute cases (n = 16/37) than in chronic cases (n = 3/21; Fischer's test P = 0.04). Prednisolone was prescribed in 10/16 cases with increased TNCC. Among the 42 cases with normal TNCC, 15 received prednisolone and 13 received non-steroidal anti-inflammatory drugs. Various antimicrobial drugs were prescribed in 53/58 cats. Duration of antimicrobial treatment was similar, regardless of positive bacterial culture (5.58 vs 4.22 weeks), abnormal CSF (5.83 vs 4.76 weeks) or MgE (5.33 vs 4.90 weeks). CONCLUSIONS AND RELEVANCE: No association was found between the CSF and MgE results. Furthermore, no association was found between MgE, CSF or bacteriology findings. In addition, abnormal CSF results might lead the clinician to treat with corticosteroids, but they did not have any impact on duration of antimicrobial treatment. CSF abnormalities were seen significantly less frequently in chronic cases. The outcome tended to be poorer when MgE was detected on MRI.


Subject(s)
Cat Diseases , Otitis Externa , Otitis Media , Animals , Cats , Retrospective Studies , Otitis Media/diagnosis , Otitis Media/veterinary , Otitis Externa/diagnosis , Otitis Externa/veterinary , Cat Diseases/diagnosis
3.
Vet J ; 279: 105782, 2022 01.
Article in English | MEDLINE | ID: mdl-34861369

ABSTRACT

Canine genodermatoses represent a broad spectrum of diseases with diverse phenotypes. Modern genetic technology including whole genome sequencing has expedited the identification of novel genes and greatly simplified the establishment of genetic diagnoses in such heterogeneous disorders. The precise genetic diagnosis of a heritable skin disorder is essential for the appropriate counselling of owners regarding the course of the disease, prognosis and implications for breeding. Understanding the underlying pathophysiology is a prerequisite to developing specific, targeted or individualized therapeutic approaches. This review aims to create a comprehensive overview of canine genodermatoses and their respective genetic aetiology known to date. Raising awareness of genodermatoses in dogs is important and this review may help clinicians to apply modern genetics in daily clinical practice, so that a precise diagnoses can be established in suspected genodermatoses.


Subject(s)
Dog Diseases , Skin Diseases , Animals , Dog Diseases/genetics , Dogs , Genetic Testing/veterinary , Phenotype , Skin , Skin Diseases/diagnosis , Skin Diseases/genetics , Skin Diseases/veterinary , Whole Genome Sequencing/veterinary
4.
Nat Ecol Evol ; 5(10): 1415-1423, 2021 10.
Article in English | MEDLINE | ID: mdl-34385618

ABSTRACT

Distinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.


Subject(s)
Wolves , Animals , Color , Dogs , Domestication , Phylogeny , Selection, Genetic , Wolves/genetics
5.
J Cell Biol ; 220(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33604655

ABSTRACT

Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.


Subject(s)
Cell Differentiation , Cell Proliferation , Epidermis/enzymology , Gene Expression Regulation, Enzymologic , Gene Silencing , Histone-Lysine N-Methyltransferase/biosynthesis , Stem Cells/enzymology , Wnt Signaling Pathway , Animals , Dogs , Female , Humans , Keratinocytes/metabolism , Loss of Function Mutation , Male , Mice
6.
Vet Pathol ; 57(6): 926-935, 2020 11.
Article in English | MEDLINE | ID: mdl-33016245

ABSTRACT

Lagotto Romagnolo breed dogs develop a progressive neurological disease with intracellular vacuolar storage when homozygous for a variant in the autophagy-related gene 4D (ATG4D). A lysosomal enzyme deficiency has not been proven in this disease, despite its overlapping morphology with lysosomal storage diseases. Instead, basal autophagy was altered in fibroblasts from affected dogs. The aim of this study was to clarify the origin of the limiting membrane of the accumulating vacuoles and determine whether altered basal autophagy affects the extracellular release of vesicles in cells from diseased dogs. When assessed by immunoelectron microscopy, the membrane of the cytoplasmic vacuoles in affected tissues contained ATG4D, markers for autolysosomes (microtubule-associated protein 1A/B light chain 3 and lysosome-associated membrane protein 2) and for recycling endosomes (transferrin receptor 2), indicating that the vacuoles are hybrid organelles between endocytic and autophagic pathways. Ultracentrifugation, nanoparticle tracking analysis, and mass spectrometry were used to analyze the vesicles released from cultured fibroblasts of affected and control dogs. The amount of extracellular vesicles (EVs) released from affected fibroblasts was significantly increased during basal conditions in comparison to controls. This difference disappeared during starvation. The basal EV proteome of affected cells was enriched with cytosolic, endoplasmic reticulum, and mitochondrial proteins. Heat shock proteins and chaperones, some of which are known substrates of basal autophagy, were identified among the proteins unique to EVs of affected cells. An increased release of extracellular vesicles may serve as a compensatory mechanism in disposal of intracellular proteins during dysfunctional basal autophagy in this spontaneous disease.


Subject(s)
Dog Diseases , Extracellular Vesicles , Lysosomal Storage Diseases , Animals , Autophagy , Dog Diseases/genetics , Dogs , Female , Lysosomal Storage Diseases/veterinary , Lysosomes , Male , Vacuoles
7.
PLoS One ; 15(3): e0225901, 2020.
Article in English | MEDLINE | ID: mdl-32119674

ABSTRACT

Hereditary nasal parakeratosis (HNPK) is an inherited disorder described in Labrador Retrievers and Greyhounds. It has been associated with breed-specific variants in the SUV39H2 gene encoding a histone 3 methyltransferase involved in epigenetic silencing. Formalin-fixed biopsies of the nasal planum of Labrador Retrievers were screened by immunofluorescence microscopy for the presence and distribution of epidermal proliferation and differentiation markers. Gene expression of these markers was further analysed using RNA sequencing (RNA-seq) and ultrastructural epidermal differences were investigated by electron microscopy. Differentiation of the nasal planum in the basal and suprabasal epidermal layers of HNPK-affected dogs (n = 6) was similar compared to control dogs (n = 6). In the upper epidermal layers, clear modifications were noticed. Loricrin protein was absent in HNPK-affected nasal planum sections in contrast to sections of the same location of control dogs. However, loricrin was present in the epidermis of paw pads and abdominal skin from HNPK dogs and healthy control dogs. The patterns of keratins K1, K10 and K14, were not markedly altered in the nasal planum of HNPK-affected dogs while the expression of the terminal differentiation marker involucrin appeared less regular. Based on RNA-seq, LOR and IVL expression levels were significantly decreased, while KRT1, KRT10 and KRT14 levels were up-regulated (log2fold-changes of 2.67, 3.19 and 1.71, respectively) in HNPK-affected nasal planum (n = 3) compared to control dogs (n = 3). Electron microscopical analysis revealed structural alterations in keratinocytes and stratum corneum, and disrupted keratinocyte adhesions and distended intercellular spaces in lesional samples (n = 3) compared to a sample of a healthy control dog (n = 1). Our findings demonstrate aberrant keratinocyte terminal differentiation of the nasal planum of HNPK-affected Labrador Retrievers and provide insights into biological consequences of this inactive SUV39H2 gene variant.


Subject(s)
Antigens, Differentiation , Dog Diseases , Genetic Diseases, Inborn , Nose Diseases , Parakeratosis , Animals , Dogs , Female , Male , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Dog Diseases/genetics , Dog Diseases/metabolism , Dog Diseases/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/veterinary , Keratinocytes/metabolism , Keratinocytes/pathology , Nose Diseases/genetics , Nose Diseases/metabolism , Nose Diseases/pathology , Nose Diseases/veterinary , Parakeratosis/genetics , Parakeratosis/metabolism , Parakeratosis/pathology , Parakeratosis/veterinary
8.
Genes (Basel) ; 11(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-32028618

ABSTRACT

Cutaneous lupus erythematosus (CLE) in humans encompasses multiple subtypes that exhibit a wide array of skin lesions and, in some cases, are associated with the development of systemic lupus erythematosus (SLE). We investigated dogs with exfoliative cutaneous lupus erythematosus (ECLE), a dog-specific form of chronic CLE that is inherited as a monogenic autosomal recessive trait. A genome-wide association study (GWAS) with 14 cases and 29 controls confirmed a previously published result that the causative variant maps to chromosome 18. Autozygosity mapping refined the ECLE locus to a 493 kb critical interval. Filtering of whole genome sequence data from two cases against 654 controls revealed a single private protein-changing variant in this critical interval, UNC93B1:c.1438C>A or p.Pro480Thr. The homozygous mutant genotype was exclusively observed in 23 ECLE affected German Shorthaired Pointers and an ECLE affected Vizsla, but absent from 845 controls. UNC93B1 is a transmembrane protein located in the endoplasmic reticulum and endolysosomes, which is required for correct trafficking of several Toll-like receptors (TLRs). The p.Pro480Thr variant is predicted to affect the C-terminal tail of the UNC93B1 that has recently been shown to restrict TLR7 mediated autoimmunity via an interaction with syndecan binding protein (SDCBP). The functional knowledge on UNC93B1 strongly suggests that p.Pro480Thr is causing ECLE in dogs. These dogs therefore represent an interesting spontaneous model for human lupus erythematosus. Our results warrant further investigations of whether genetic variants affecting the C-terminus of UNC93B1 might be involved in specific subsets of CLE or SLE cases in humans and other species.


Subject(s)
Dog Diseases/genetics , Lupus Erythematosus, Cutaneous/genetics , Lupus Erythematosus, Cutaneous/veterinary , Membrane Transport Proteins/genetics , Mutation, Missense , Animals , Dog Diseases/pathology , Dogs , Genome-Wide Association Study , Lupus Erythematosus, Cutaneous/pathology , Male , Whole Genome Sequencing
9.
BMC Vet Res ; 15(1): 174, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31133058

ABSTRACT

BACKGROUND: Medicinal plants have been used traditionally since centuries for wound care and treatment of skin diseases both in human and animals. Skin diseases are one of the most common reasons for owners to take their dog to the veterinarian. The demands for treatment and prophylaxis of these diseases are broad. A wide range of bacteria including antibiotic-resistant bacteria can be involved, making the treatment challenging and bear an anthropo-zoonotic potential. The aim of this review is to systematically evaluate based on recent scientific literature, the potential of four medicinal plants to enrich the therapeutic options in pyoderma, canine atopic dermatitis, otitis externa, wounds and dermatophytosis in dogs. RESULTS: Based on four books and a survey among veterinarians specialized in phytotherapy, four medicinal plants were chosen as the subject of this systematic review: Calendula officinalis L. (Marigold), Hypericum perforatum L. agg. (St. John's Wort), Matricaria chamomilla L. (syn. Matricaria recutita L., Chamomile) and Salvia officinalis L. (Sage). According to the PRISMA statement through literature research on two online databases a total of 8295 publications was screened and narrowed down to a final 138 publications for which full-text documents were analyzed for its content resulting in a total of 145 references (21 clinical, 24 in vivo and 100 in vitro references). CONCLUSIONS: All four plants were proven to have antibacterial and antifungal effects of a rather broad spectrum including antibiotic-resistant bacteria. This makes them an interesting new option for the treatment of pyoderma, otitis externa, infected wounds and dermatophytosis. Marigold, St. John's Wort and Chamomile showed wound-healing properties and are thus promising candidates in line to fill the therapeutic gap in canine wound-healing agents. St. John's Wort and Chamomile also showed anti-inflammatory and other beneficial effects on healthy skin. Due to the wide range of beneficial effects of these medicinal plants, they should be taken into account for the treatment of dermatologic diseases in dogs at least in future clinical research.


Subject(s)
Dog Diseases/drug therapy , Plant Preparations/therapeutic use , Skin Diseases/veterinary , Administration, Topical , Animals , Anti-Infective Agents/therapeutic use , Dogs , Phytotherapy/veterinary , Plants, Medicinal , Skin Diseases/drug therapy
10.
Emerg Infect Dis ; 25(6): 1235-1238, 2019 06.
Article in English | MEDLINE | ID: mdl-31107228

ABSTRACT

Fox-derived Sarcoptes scabiei mites caused an outbreak of mange on a farm in Switzerland in 2018. Pruritic skin lesions suggestive of S. scabiei mite infestation developed in 4 humans who had direct contact with affected farm animals but not foxes. Sarcoptic mange is continuously spreading; such outbreaks affecting humans could start occurring more frequently.


Subject(s)
Animals, Domestic/parasitology , Foxes/parasitology , Sarcoptes scabiei/classification , Scabies/epidemiology , Scabies/parasitology , Animals , Animals, Wild , DNA, Protozoan , Disease Outbreaks , History, 21st Century , Humans , Phylogeny , Public Health Surveillance , Sarcoptes scabiei/genetics , Scabies/history , Scabies/transmission , Switzerland/epidemiology
11.
Exp Dermatol ; 28(4): 350-354, 2019 04.
Article in English | MEDLINE | ID: mdl-29963719

ABSTRACT

FAM83G/Fam83g genetic variants have been described in dogs, mice and recently also in humans. They are associated with palmoplantar keratoderma and altered hair or coat phenotype, reported as wooly phenotype in mice. FAM83G/Fam83g is an unexplored effector of temporally and spatially coordinated Wnt and BMP signalling which are key pathways in pre- and postnatal hair follicle morphogenesis and differentiation. The aim of this study was to unravel phenotypic consequences of FAM83G/Fam83g variants on hair coat formation in dogs and mice. Our results show differences in hair types and hair shaft structures in both species. Additionally, mice exhibit deregulated hair cycle progression which timely correlates with defective Wnt signalling (Axin2) and Bmp2/4 expression. These results affirm the involvement of FAM83G in hair morphogenesis, hair follicle differentiation and cycling.


Subject(s)
Hair/growth & development , Hair/pathology , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/veterinary , Proteins/genetics , Animals , Axin Protein/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Dogs , Female , Genetic Variation , Hair Follicle/pathology , Keratoderma, Palmoplantar/physiopathology , Male , Mice , Phenotype , Wnt Signaling Pathway/genetics
12.
BMC Vet Res ; 14(1): 200, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29940943

ABSTRACT

BACKGROUND: The role of corynebacteria in canine and feline otitis has not been investigated in detail; however, members of this genus are increasingly recognized as pathogens of otitis in both human and veterinary medicine. CASE PRESENTATION: Here we report the first case of feline otitis associated with the recently described species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6 weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was 100% identical to the recently published novel corynebacterium species, Corynebacterium provencense. Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%) confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical improvement. CONCLUSION: Corynebacteria from otitis cases are not routinely identified at the species level and not tested for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since corynebacteria are often resistant to multiple drugs.


Subject(s)
Cat Diseases/microbiology , Corynebacterium Infections/veterinary , Corynebacterium , Otitis Media/veterinary , Animals , Anti-Bacterial Agents/therapeutic use , Cat Diseases/drug therapy , Cats , Chloramphenicol/therapeutic use , Corynebacterium/genetics , Corynebacterium Infections/drug therapy , Corynebacterium Infections/microbiology , Genome, Bacterial/genetics , Male , Microbial Sensitivity Tests/veterinary , Otitis Media/drug therapy , Otitis Media/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
13.
BMC Vet Res ; 14(1): 91, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534710

ABSTRACT

BACKGROUND: Scabies is a contagious skin disease rarely described in miniature pigs. To the best of the authors' knowledge, a zoonotic transfer from infected pet pigs to humans has not been reported previously. CASE PRESENTATION: This case report describes the infestation with Sarcoptes scabiei mites in two miniature pigs presenting with unusual clinical signs, and disease transmission to a child. Two 7-month-old male castrated miniature pig siblings were examined. Both had developed skin lesions, one animal was presented for neurological signs and emaciation. They were housed together in an indoor- and outdoor enclosure. Dermatological examination revealed a dull, greasy coat with generalized hypotrichosis and multifocal erythema. Microscopic examination of skin scrapings, impression smears of affected skin and ear swabs revealed high numbers of Sarcoptes mites in both animals as well as bacterial overgrowth. A subcutaneous injection of ivermectin 0.3 mg/kg was administered to both animals and repeated after 2 weeks. Both miniature pigs received subcutaneous injections with butafosfan and cyanocobalamin, were washed with a 3% chlorhexidine shampoo and were fed on a well-balanced diet. Pig enclosures were cleaned. The infested child was examined by a physician and an antipruritic cream was prescribed. Both miniature pigs and the child went into clinical remission after treatment. CONCLUSION: Sarcoptic mange is rare or even eradicated in commercial pig farming in many countries but miniature pigs may represent a niche for Sarcoptes scabiei infections. This case report indicates that miniature pigs kept as pets can efficiently transmit zoonotic disease to humans. In addition, these animals may represent a niche for Sarcoptes scabiei infestation in countries where sarcoptic mange in commercial pig farms has been eradicated and could therefore pose, a hazard for specific pathogen free farms.


Subject(s)
Sarcoptes scabiei , Scabies/veterinary , Swine, Miniature/parasitology , Zoonoses/parasitology , Animals , Child , Female , Humans , Male , Scabies/transmission , Swine , Zoonoses/transmission
14.
PLoS Genet ; 14(3): e1007264, 2018 03.
Article in English | MEDLINE | ID: mdl-29565995

ABSTRACT

Lethal acrodermatitis (LAD) is a genodermatosis with monogenic autosomal recessive inheritance in Bull Terriers and Miniature Bull Terriers. The LAD phenotype is characterized by poor growth, immune deficiency, and skin lesions, especially at the paws. Utilizing a combination of genome wide association study and haplotype analysis, we mapped the LAD locus to a critical interval of ~1.11 Mb on chromosome 14. Whole genome sequencing of an LAD affected dog revealed a splice region variant in the MKLN1 gene that was not present in 191 control genomes (chr14:5,731,405T>G or MKLN1:c.400+3A>C). This variant showed perfect association in a larger combined Bull Terrier/Miniature Bull Terrier cohort of 46 cases and 294 controls. The variant was absent from 462 genetically diverse control dogs of 62 other dog breeds. RT-PCR analysis of skin RNA from an affected and a control dog demonstrated skipping of exon 4 in the MKLN1 transcripts of the LAD affected dog, which leads to a shift in the MKLN1 reading frame. MKLN1 encodes the widely expressed intracellular protein muskelin 1, for which diverse functions in cell adhesion, morphology, spreading, and intracellular transport processes are discussed. While the pathogenesis of LAD remains unclear, our data facilitate genetic testing of Bull Terriers and Miniature Bull Terriers to prevent the unintentional production of LAD affected dogs. This study may provide a starting point to further clarify the elusive physiological role of muskelin 1 in vivo.


Subject(s)
Acrodermatitis/veterinary , Cell Adhesion Molecules/genetics , Dog Diseases/genetics , Genes, Lethal , Intracellular Signaling Peptides and Proteins/genetics , RNA Splicing , Acrodermatitis/genetics , Animals , Chromosome Mapping , Dogs , Exons , Genome-Wide Association Study , Haplotypes , Real-Time Polymerase Chain Reaction
15.
PLoS One ; 12(10): e0186469, 2017.
Article in English | MEDLINE | ID: mdl-29065140

ABSTRACT

Alopecia X is a hair cycle arrest disorder in Pomeranians. Histologically, kenogen and telogen hair follicles predominate, whereas anagen follicles are sparse. The induction of anagen relies on the activation of hair follicle stem cells and their subsequent proliferation and differentiation. Stem cell function depends on finely tuned interactions of signaling molecules and transcription factors, which are not well defined in dogs. We performed transcriptome profiling on skin biopsies to analyze altered molecular pathways in alopecia X. Biopsies from five affected and four non-affected Pomeranians were investigated. Differential gene expression revealed a downregulation of key regulator genes of the Wnt (CTNNB1, LEF1, TCF3, WNT10B) and Shh (SHH, GLI1, SMO, PTCH2) pathways. In mice it has been shown that Wnt and Shh signaling results in stem cell activation and differentiation Thus our findings are in line with the lack of anagen hair follicles in dogs with Alopecia X. We also observed a significant downregulation of the stem cell markers SOX9, LHX2, LGR5, TCF7L1 and GLI1 whereas NFATc1, a quiescence marker, was upregulated in alopecia X. Moreover, genes coding for enzymes directly involved in the sex hormone metabolism (CYP1A1, CYP1B1, HSD17B14) were differentially regulated in alopecia X. These findings are in agreement with the so far proposed but not yet proven deregulation of the sex hormone metabolism in this disease.


Subject(s)
Alopecia/veterinary , Hair , Alopecia/genetics , Animals , Biomarkers/metabolism , Dogs , Female , Male , Receptors, Calcitriol/metabolism , Stem Cells/metabolism
16.
Vet Dermatol ; 28(6): 616-e150, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28670783

ABSTRACT

OBJECTIVE: A novel congenital disorder affecting a calf was observed, and its phenotype and genetic mutation identified. ANIMAL: A six-month-old female Brown Swiss calf. METHODS: Diagnostic investigation and whole genome sequencing of a case parent trio was performed. RESULTS: The calf had a dull kinky coat with mild hypotrichosis, and teeth with brown staining and enamel defects. Histological examination of skin biopsies was compatible with a follicular dysplasia. Radiography and computed tomography revealed thickening of the skull bones and large pulp cavities with a marked thinning of enamel affecting all teeth. A de novo germline mutation affecting the distal-less homeobox gene (DLX3) was identified. The 10 bp frameshift mutation in exon 3 of the bovine DLX3 gene is predicted to replace the second C-terminal transactivation domain of the wild-type protein by a recoded peptide of 99 amino acids without any sequence similarity. CONCLUSION AND CLINICAL IMPORTANCE: A causative mutation for a sporadic phenotype resembling human tricho-dento-osseous syndrome was identified after detection of a de novo germline mutation in the DLX3 gene.


Subject(s)
Cattle Diseases/genetics , Craniofacial Abnormalities/veterinary , Dental Enamel Hypoplasia/veterinary , Germ-Line Mutation/genetics , Hair Diseases/veterinary , Homeodomain Proteins/genetics , Animals , Cattle/genetics , Craniofacial Abnormalities/genetics , Dental Enamel Hypoplasia/genetics , Female , Frameshift Mutation/genetics , Hair Diseases/genetics , Sequence Analysis, DNA/veterinary
17.
Vet Dermatol ; 28(6): 559-e133, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28748533

ABSTRACT

BACKGROUND: The discovery of a new Macrococcus canis species isolated from skin and infection sites of dogs led us to question if Macrococcus spp. are common in dogs and are resistant to antibiotics. HYPOTHESIS/OBJECTIVES: To evaluate the occurrence of Macrococcus spp. in dogs, determine antibiotic resistance profiles and genetic relationships. ANIMALS: One hundred and sixty two dogs (mainly West Highland white terriers and Newfoundland dogs) were screened for the presence of Macrococcus, including six dogs with Macrococcus infections. METHODS: Samples were taken from skin, ear canal and oral mucosa using swabs. Macrococci were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry, 16S rRNA sequencing and nuc-PCR. Minimal inhibitory concentrations of 19 antibiotics were determined using broth microdilution. Resistance mechanisms were identified by microarray and sequencing of the fluoroquinolone-determining region of gyrA and grlA. Sequence type (ST) was determined by multilocus sequence typing. RESULTS: Out of the 162 dogs, six harboured M. caseolyticus (n = 6) and 13 harboured M. canis (n = 16). Six isolates of M. canis and one of M. caseolyticus were obtained from infection sites. The 22 M. canis strains belonged to 20 different STs and the seven M. caseolyticus strains to three STs. Resistance to antibiotics was mostly associated with the detection of known genes, with mecB-mediated meticillin resistance being the most frequent. CONCLUSION AND CLINICAL IMPORTANCE: This study gives some insights into the occurrence and genetic characteristics of antibiotic-resistant Macrococcus from dogs. Presence of M. canis in infection sites and resistance to antibiotics emphasized that more attention should be paid to this novel bacteria species.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Dog Diseases/microbiology , Gram-Positive Bacteria/genetics , Gram-Positive Bacterial Infections/veterinary , Skin Diseases, Bacterial/veterinary , Animals , Dog Diseases/epidemiology , Dogs , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Genetic Variation/genetics , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests/veterinary , Multilocus Sequence Typing/veterinary , Multiplex Polymerase Chain Reaction/veterinary , Newfoundland and Labrador/epidemiology , RNA, Ribosomal, 16S/genetics , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/epidemiology , Skin Diseases, Bacterial/microbiology
18.
PLoS Genet ; 13(3): e1006651, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28249031

ABSTRACT

Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Dog Diseases/genetics , Genetic Predisposition to Disease/genetics , Ichthyosis/genetics , Mutation, Missense , Amino Acid Sequence , Animals , Aspartic Acid Endopeptidases/metabolism , Base Sequence , Disease Models, Animal , Dog Diseases/enzymology , Dogs , Female , Filaggrin Proteins , Humans , Ichthyosis/enzymology , Ichthyosis/veterinary , Intermediate Filament Proteins/metabolism , Microscopy, Fluorescence , Sequence Analysis, DNA/methods , Sequence Homology, Amino Acid , Skin/enzymology , Skin/metabolism , Skin/pathology
19.
Vet Dermatol ; 28(1): 4-e1, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27425028

ABSTRACT

BACKGROUND: Molecular genetics has made significant advances in the analysis of hereditary dermatoses during the last several years. OBJECTIVES: To provide an update on currently available genetic tests for skin diseases of dogs, cats and horses, and to aid the veterinary clinician in the appropriate selection and applications of genetic tests. METHODS: The scientific literature on the topic was critically reviewed. The list of known causative variants for genodermatoses and hair morphology traits was compiled by searching the Online Mendelian Inheritance in Animals (OMIA) database. RESULTS: Genetic testing has become an important diagnostic method in veterinary medicine. Genetic tests can help to establish the correct diagnosis in some diseases with relatively nonspecific signs. Genetic tests are also essential for sustainable breeding programmes and to help minimize the frequency of animals with hereditary diseases. Advances in genetic methodology and bioinformatics already allow genome-wide screening for potential disease causing mutations for research purposes. It is anticipated that this will become a routine process in clinical practice in the future. CONCLUSION AND CLINICAL IMPORTANCE: As specific DNA tests and broad genome-wide analyses come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results.


Subject(s)
Genetic Testing/veterinary , Skin Diseases/veterinary , Animals , Cat Diseases/diagnosis , Cat Diseases/genetics , Cats/genetics , Dog Diseases/diagnosis , Dog Diseases/genetics , Dogs/genetics , Genetic Predisposition to Disease/genetics , Horse Diseases/diagnosis , Horse Diseases/genetics , Horses/genetics , Skin Diseases/diagnosis , Skin Diseases/genetics
20.
G3 (Bethesda) ; 6(9): 2963-70, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27449517

ABSTRACT

We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed "brindle" by horse breeders. We propose the term "brindle 1 (BR1)" for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.


Subject(s)
Hair/metabolism , Horses/genetics , Metalloendopeptidases/genetics , RNA Splicing/genetics , Animals , Exons/genetics , Hair/growth & development , Humans , Introns/genetics , Phenotype , Skin Diseases/genetics , Skin Diseases/pathology , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...