Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Mol Metab ; 82: 101907, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428817

ABSTRACT

OBJECTIVES: There is significant interest in uncovering the mechanisms through which exercise enhances cognition, memory, and mood, and lowers the risk of neurodegenerative diseases. In this study, we utilize forced treadmill running and distance-matched voluntary wheel running, coupled with light sheet 3D brain imaging and c-Fos immunohistochemistry, to generate a comprehensive atlas of exercise-induced brain activation in mice. METHODS: To investigate the effects of exercise on brain activity, we compared whole-brain activation profiles of mice subjected to treadmill running with mice subjected to distance-matched wheel running. Male mice were assigned to one of four groups: a) an acute bout of voluntary wheel running, b) confinement to a cage with a locked running wheel, c) forced treadmill running, or d) placement on an inactive treadmill. Immediately following each exercise or control intervention, blood samples were collected for plasma analysis, and brains were collected for whole-brain c-Fos quantification. RESULTS: Our dataset reveals 255 brain regions activated by acute exercise in mice, the majority of which have not previously been linked to exercise. We find a broad response of 140 regulated brain regions that are shared between voluntary wheel running and treadmill running, while 32 brain regions are uniquely regulated by wheel running and 83 brain regions uniquely regulated by treadmill running. In contrast to voluntary wheel running, forced treadmill running triggers activity in brain regions associated with stress, fear, and pain. CONCLUSIONS: Our findings demonstrate a significant overlap in neuronal activation signatures between voluntary wheel running and distance-matched forced treadmill running. However, our analysis also reveals notable differences and subtle nuances between these two widely used paradigms. The comprehensive dataset is accessible online at www.neuropedia.dk, with the aim of enabling future research directed towards unraveling the neurobiological response to exercise.


Subject(s)
Motor Activity , Physical Conditioning, Animal , Mice , Male , Animals , Motor Activity/physiology , Brain , Cognition
2.
Nat Commun ; 15(1): 1192, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331907

ABSTRACT

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.


Subject(s)
Obesity , Receptor, Melanocortin, Type 4 , Male , Mice , Animals , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Obesity/genetics , Obesity/prevention & control , Weight Gain , Fibroblast Growth Factors/genetics , Body Weight/physiology
3.
Mol Metab ; 80: 101883, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237896

ABSTRACT

OBJECTIVE: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and modulation of neurocircuits implicated in homeostatic and hedonic feeding. METHODS: Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression. RESULTS: TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice, and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures. CONCLUSION: The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose homeostasis and gastric emptying as well as central regulation of energy balance and food intake.


Subject(s)
Corticosterone , Glycemic Control , Receptors, G-Protein-Coupled , Humans , Rats , Mice , Animals , Olanzapine , Body Weight , Weight Gain , Disease Models, Animal , Glucose
4.
Neuropharmacology ; 238: 109637, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37391028

ABSTRACT

Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. However, Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4_C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Venoms , Mice , Animals , Exenatide , Glucagon-Like Peptide-1 Receptor/agonists , Venoms/pharmacology , Venoms/chemistry , Peptides/chemistry , Brain/diagnostic imaging , Brain/metabolism
5.
Cell Rep ; 42(5): 112466, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37148870

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice. Co-treatment with nicotine and liraglutide gives rise to neuronal activity in multiple brain regions, and we demonstrate that GLP-1R agonism increases excitability of hypothalamic proopiomelanocortin (POMC) neurons and dopaminergic neurons in the ventral tegmental area (VTA). Further, using a genetically encoded dopamine sensor, we reveal that liraglutide suppresses nicotine-induced dopamine release in the nucleus accumbens in freely behaving mice. These data support the pursuit of GLP-1R-based therapies for nicotine dependence and encourage further evaluation of combined treatment with GLP-1R agonists and nicotinic receptor agonists for weight loss.


Subject(s)
Glucagon-Like Peptide 1 , Liraglutide , Mice , Animals , Glucagon-Like Peptide 1/pharmacology , Liraglutide/pharmacology , Nicotine/pharmacology , Dopamine , Obesity/drug therapy , Obesity/metabolism
6.
Neuroinformatics ; 21(2): 269-286, 2023 04.
Article in English | MEDLINE | ID: mdl-36809643

ABSTRACT

Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Mice , Brain/diagnostic imaging , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Brain Mapping/methods , Skull/diagnostic imaging
7.
Mol Metab ; 55: 101392, 2022 01.
Article in English | MEDLINE | ID: mdl-34781035

ABSTRACT

OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Peptide YY/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Eating/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Gastric Bypass , Glucagon-Like Peptide-1 Receptor/metabolism , Hypothalamus , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/physiopathology , Peptide YY/physiology , Weight Loss
8.
Front Genet ; 13: 1056114, 2022.
Article in English | MEDLINE | ID: mdl-36685855

ABSTRACT

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

9.
Am J Physiol Renal Physiol ; 321(2): F149-F161, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34180715

ABSTRACT

Hypertension is a critical comorbidity for progression of diabetic kidney disease (DKD). To facilitate the development of novel therapeutic interventions with the potential to control disease progression, there is a need to establish translational animal models that predict treatment effects in human DKD. The present study aimed to characterize renal disease and outcomes of standard of medical care in a model of advanced DKD facilitated by adeno-associated virus (AAV)-mediated renin overexpression in uninephrectomized (UNx) db/db mice. Five weeks after single AAV administration and 4 wk after UNx, female db/db UNx-ReninAAV mice received (PO, QD) vehicle, lisinopril (40 mg/kg), empagliflozin (20 mg/kg), or combination treatment for 12 wk (n = 17 mice/group). Untreated db/+ mice (n = 8) and vehicle-dosed db/db UNx-LacZAAV mice (n = 17) served as controls. End points included plasma, urine, and histomorphometric markers of kidney disease. Total glomerular numbers and individual glomerular volume were evaluated by whole kidney three-dimensional imaging analysis. db/db UNx-ReninAAV mice developed hallmarks of progressive DKD characterized by severe albuminuria, advanced glomerulosclerosis, and glomerular hypertrophy. Lisinopril significantly improved albuminuria, glomerulosclerosis, tubulointerstitial injury, and inflammation. Although empagliflozin alone had no therapeutic effect on renal endpoints, lisinopril and empagliflozin exerted synergistic effects on renal histological outcomes. In conclusion, the db/db UNx-ReninAAV mouse demonstrates good clinical translatability with respect to physiological and histological hallmarks of progressive DKD. The efficacy of standard of care to control hypertension and hyperglycemia provides a proof of concept for testing novel drug therapies in the model.NEW & NOTEWORTHY Translational animal models of diabetic kidney disease (DKD) are important tools in preclinical research and drug discovery. Here, we show that the standard of care to control hypertension (lisinopril) and hyperglycemia (empagliflozin) improves physiological and histopathological hallmarks of kidney disease in a mouse model of hypertension-accelerated progressive DKD. The findings substantiate hypertension and type 2 diabetes as essential factors in driving DKD progression and provide a proof of concept for probing novel drugs for potential nephroprotective efficacy in this model.


Subject(s)
Antihypertensive Agents/therapeutic use , Benzhydryl Compounds/therapeutic use , Blood Pressure/drug effects , Diabetic Nephropathies/drug therapy , Glucosides/therapeutic use , Hypertension/drug therapy , Lisinopril/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Animals , Antihypertensive Agents/pharmacology , Benzhydryl Compounds/pharmacology , Diabetic Nephropathies/complications , Disease Models, Animal , Female , Glucosides/pharmacology , Hypertension/complications , Lisinopril/pharmacology , Mice , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Treatment Outcome
10.
Eur J Neurosci ; 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33905587

ABSTRACT

The pancreatic hormone amylin plays a central role in regulating energy homeostasis and glycaemic control by stimulating satiation and reducing food reward, making amylin receptor agonists attractive for the treatment of metabolic diseases. Amylin receptors consist of heterodimerized complexes of the calcitonin receptor and receptor-activity modifying proteins subtype 1-3 (RAMP1-3). Neuronal activation in response to amylin dosing has been well characterized, but only in selected regions expressing high levels of RAMPs. The current study identifies global brain-wide changes in response to amylin and by comparing wild type and RAMP1/3 knockout mice reveals the importance of RAMP1/3 in mediating this response. Amylin dosing resulted in neuronal activation as measured by an increase in c-Fos labelled cells in 20 brain regions, altogether making up the circuitry of neuronal appetite regulation (e.g., area postrema (AP), nucleus of the solitary tract (NTS), parabrachial nucleus (PB), and central amygdala (CEA)). c-Fos response was also detected in distinct nuclei across the brain that typically have not been linked with amylin signalling. In RAMP1/3 knockout amylin induced low-level neuronal activation in seven regions, including the AP, NTS and PB, indicating the existence of RAMP1/3-independent mechanisms of amylin response. Under basal conditions RAMP1/3 knockout mice show reduced neuronal activity in the hippocampal formation as well as reduced hippocampal volume, suggesting a role for RAMP1/3 in hippocampal physiology and maintenance. Altogether these data provide a global map of amylin response in the mouse brain and establishes the significance of RAMP1/3 receptors in relaying this response.

11.
Sci Rep ; 11(1): 5241, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664407

ABSTRACT

Angiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse effects on multiple signalling pathways at different time periods following MI. Here we aimed to establish the role of captopril in late-stage post-MI remodelling. Left anterior descending artery (LAD) ligation or sham surgery was carried out in male C57BL/6J mice. Seven days post-surgery LAD ligated mice were allocated to daily vehicle or captopril treatment continued over four weeks. To provide comprehensive characterization of the changes in mouse heart following MI a 3D light sheet imaging method was established together with automated image analysis workflow. The combination of echocardiography and light sheet imaging enabled to assess cardiac function and the underlying morphological changes. We show that delayed captopril treatment does not affect infarct size but prevents left ventricle dilation and hypertrophy, resulting in improved ejection fraction. Quantification of lectin perfused blood vessels showed improved vascular density in the infarct border zone in captopril treated mice in comparison to vehicle dosed control mice. These results validate the applicability of combined echocardiographic and light sheet assessment of drug mode of action in preclinical cardiovascular research.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Captopril/pharmacology , Myocardial Infarction/drug therapy , Ventricular Function, Left/drug effects , Animals , Disease Models, Animal , Echocardiography , Heart Ventricles/diagnostic imaging , Heart Ventricles/drug effects , Heart Ventricles/pathology , Humans , Male , Mice , Microscopy , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/genetics , Myocardial Infarction/pathology
12.
Mol Metab ; 47: 101171, 2021 05.
Article in English | MEDLINE | ID: mdl-33529728

ABSTRACT

OBJECTIVE: The development of effective anti-obesity therapeutics relies heavily on the ability to target specific brain homeostatic and hedonic mechanisms controlling body weight. To obtain further insight into neurocircuits recruited by anti-obesity drug treatment, the present study aimed to determine whole-brain activation signatures of six different weight-lowering drug classes. METHODS: Chow-fed C57BL/6J mice (n = 8 per group) received acute treatment with lorcaserin (7 mg/kg; i.p.), rimonabant (10 mg/kg; i.p.), bromocriptine (10 mg/kg; i.p.), sibutramine (10 mg/kg; p.o.), semaglutide (0.04 mg/kg; s.c.) or setmelanotide (4 mg/kg; s.c.). Brains were sampled two hours post-dosing and whole-brain neuronal activation patterns were analysed at single-cell resolution using c-Fos immunohistochemistry and automated quantitative three-dimensional (3D) imaging. RESULTS: The whole-brain analysis comprised 308 atlas-defined mouse brain areas. To enable fast and efficient data mining, a web-based 3D imaging data viewer was developed. All weight-lowering drugs demonstrated brain-wide responses with notable similarities in c-Fos expression signatures. Overlapping c-Fos responses were detected in discrete homeostatic and non-homeostatic feeding centres located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures as well as the dopaminergic system. CONCLUSIONS: Whole-brain c-Fos expression signatures of various weight-lowering drug classes point to a discrete set of brain regions and neurocircuits which could represent key neuroanatomical targets for future anti-obesity therapeutics.


Subject(s)
Anti-Obesity Agents/pharmacology , Brain/diagnostic imaging , Brain/metabolism , Pharmaceutical Preparations/metabolism , Animals , Body Weight , Cyclobutanes , Homeostasis , Imaging, Three-Dimensional , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Obesity/metabolism , Obesity/therapy , Proto-Oncogene Proteins c-fos/metabolism
13.
Neuroinformatics ; 19(3): 433-446, 2021 07.
Article in English | MEDLINE | ID: mdl-33063286

ABSTRACT

In recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen's Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology. To improve the accuracy and speed by which LSFM-imaged whole-brain data can be registered and quantified, we have created an optimized digital mouse brain atlas based on immunolabelled and solvent-cleared brains. Compared to the AIBS CCFv3 atlas, our atlas resulted in faster and more accurate mapping of neuronal activity as measured by c-Fos expression, especially in the hindbrain. We further demonstrated utility of the LSFM atlas by comparing whole-brain quantitative changes in c-Fos expression following acute administration of semaglutide in lean and diet-induced obese mice. In combination with an improved algorithm for c-Fos detection, the LSFM atlas enables unbiased and computationally efficient characterization of drug effects on whole-brain neuronal activity patterns. In conclusion, we established an optimized reference atlas for more precise mapping of fluorescent markers, including c-Fos, in mouse brains processed for LSFM.


Subject(s)
Brain , Neurons , Algorithms , Animals , Brain/diagnostic imaging , Imaging, Three-Dimensional , Mice , Microscopy, Fluorescence
14.
Sci Rep ; 10(1): 21523, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299076

ABSTRACT

Complications of atherosclerosis are the leading cause of morbidity and mortality worldwide. Various genetically modified mouse models are used to investigate disease trajectory with classical histology, currently the preferred methodology to elucidate plaque composition. Here, we show the strength of light-sheet fluorescence microscopy combined with deep learning image analysis for characterising and quantifying plaque burden and composition in whole aorta specimens. 3D imaging is a non-destructive method that requires minimal ex vivo handling and can be up-scaled to large sample sizes. Combined with deep learning, atherosclerotic plaque in mice can be identified without any ex vivo staining due to the autofluorescent nature of the tissue. The aorta and its branches can subsequently be segmented to determine how anatomical position affects plaque composition and progression. Here, we find the highest plaque accumulation in the aortic arch and brachiocephalic artery. Simultaneously, aortas can be stained for markers of interest (for example the pan immune cell marker CD45) and quantified. In ApoE-/- mice we observe that levels of CD45 reach a plateau after which increases in plaque volume no longer correlate to immune cell infiltration. All underlying code is made publicly available to ease adaption of the method.


Subject(s)
Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Animals , Aorta/pathology , Aortic Diseases , Apolipoproteins E/analysis , Atherosclerosis/complications , Atherosclerosis/pathology , Deep Learning , Disease Models, Animal , Female , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence/methods , Receptors, LDL/analysis
15.
Dis Model Mech ; 13(12)2020 12 18.
Article in English | MEDLINE | ID: mdl-33158929

ABSTRACT

Diabetes is characterized by rising levels of blood glucose and is often associated with a progressive loss of insulin-producing beta cells. Recent studies have demonstrated that it is possible to regenerate new beta cells through proliferation of existing beta cells or trans-differentiation of other cell types into beta cells, raising hope that diabetes can be cured through restoration of functional beta cell mass. Efficient quantification of beta cell mass and islet characteristics is needed to enhance drug discovery for diabetes. Here, we report a 3D quantitative imaging platform for unbiased evaluation of changes in islets in mouse models of type I and II diabetes. To determine whether the method can detect pharmacologically induced changes in beta cell volume, mice were treated for 14 days with either vehicle or the insulin receptor antagonist S961 (2.4 nmol/day) using osmotic minipumps. Mice treated with S961 displayed increased blood glucose and insulin levels. Light-sheet imaging of insulin and Ki67 (also known as Mki67)-immunostained pancreata revealed a 43% increase in beta cell volume and 21% increase in islet number. S961 treatment resulted in an increase in islets positive for the cell proliferation marker Ki67, suggesting that proliferation of existing beta cells underlies the expansion of total beta cell volume. Using light-sheet imaging of a non-obese diabetic mouse model of type I diabetes, we also characterized the infiltration of CD45 (also known as PTPRC)-labeled leukocytes in islets. At 14 weeks, 40% of the small islets, but more than 80% of large islets, showed leukocyte infiltration. These results demonstrate how quantitative light-sheet imaging can capture changes in individual islets to help pharmacological research in diabetes.


Subject(s)
Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Imaging, Three-Dimensional , Islets of Langerhans/diagnostic imaging , Animals , Blood Glucose/metabolism , Cell Proliferation/drug effects , Cell Size/drug effects , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Disease Models, Animal , Inflammation/pathology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Islets of Langerhans/pathology , Ki-67 Antigen/metabolism , Male , Mice, Inbred C57BL , Peptides/pharmacology
17.
Kidney360 ; 1(6): 469-479, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-35368599

ABSTRACT

Background: Glomerular hypertrophy is a hallmark of kidney injury in metabolically induced renal diseases such as obesity-associated glomerulopathies and diabetic nephropathy (DN). Methods: Using light sheet fluorescent microscopy (LSFM) and 3D image analysis, we tested algorithms for automated and unbiased quantification of total glomerular numbers and individual glomerular volume in the uninephrectomized (UNx) db/db mouse model of DN. Results: At 6 weeks after surgery, db/db and UNx db/db mice showed increased urine albumin-to-creatinine ratio (ACR) compared with db/+ control mice. Before euthanasia, glomeruli were labeled in vivo by injecting tomato lectin. Whole-kidney LSFM 3D image analysis revealed that mean glomerular volume was significantly increased in UNx db/db mice compared with db/+ mice. Moreover, analysis of individual glomerular volume showed a shift in volume distribution toward larger glomeruli and thereby demonstrated additive effects of diabetes and UNx on induction of glomerular hypertrophy. The automatized quantification showed no significant differences in glomerular numbers among db/+, db/db, and UNx db/db mice. These data correlated with glomerular numbers as quantified by subsequent stereologic quantification. Conclusions: Overall, LSFM coupled with automated 3D histomorphometric analysis was demonstrated to be advantageous for unbiased assessment of glomerular volume and numbers in mouse whole-kidney samples. Furthermore, we showed that injection of fluorescently labeled lectin and albumin can be used as markers of nephron segments in the mouse kidneys, thus enabling functional assessment of kidney physiology, pathology, and pharmacology in preclinical rodent models of kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Hypertrophy/pathology , Kidney/pathology , Kidney Glomerulus/pathology , Mice , Mice, Inbred Strains
18.
Dis Model Mech ; 12(11)2019 11 22.
Article in English | MEDLINE | ID: mdl-31704726

ABSTRACT

Parkinson's disease (PD) is a basal ganglia movement disorder characterized by progressive degeneration of the nigrostriatal dopaminergic system. Immunohistochemical methods have been widely used for characterization of dopaminergic neuronal injury in animal models of PD, including the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. However, conventional immunohistochemical techniques applied to tissue sections have inherent limitations with respect to loss of 3D resolution, yielding insufficient information on the architecture of the dopaminergic system. To provide a more comprehensive and non-biased map of MPTP-induced changes in central dopaminergic pathways, we used iDISCO immunolabeling, light-sheet fluorescence microscopy (LSFM) and deep-learning computational methods for whole-brain three-dimensional visualization and automated quantitation of tyrosine hydroxylase (TH)-positive neurons in the adult mouse brain. Mice terminated 7 days after acute MPTP administration demonstrated widespread alterations in TH expression. Compared to vehicle controls, MPTP-dosed mice showed a significant loss of TH-positive neurons in the substantia nigra pars compacta and ventral tegmental area. Also, MPTP dosing reduced overall TH signal intensity in basal ganglia nuclei, i.e. the substantia nigra, caudate-putamen, globus pallidus and subthalamic nucleus. In contrast, increased TH signal intensity was predominantly observed in limbic regions, including several subdivisions of the amygdala and hypothalamus. In conclusion, mouse whole-brain 3D imaging is ideal for unbiased automated counting and densitometric analysis of TH-positive cells. The LSFM-deep learning pipeline tracked brain-wide changes in catecholaminergic pathways in the MPTP mouse model of PD, and may be applied for preclinical characterization of compounds targeting dopaminergic neurotransmission.


Subject(s)
Brain/diagnostic imaging , Disease Models, Animal , Imaging, Three-Dimensional/methods , Neurons/enzymology , Parkinson Disease/diagnostic imaging , Tyrosine 3-Monooxygenase/analysis , Animals , Deep Learning , MPTP Poisoning/diagnostic imaging , Mice , Microscopy, Fluorescence , Motor Skills , Parkinson Disease/enzymology
19.
Sci Rep ; 9(1): 10478, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324837

ABSTRACT

The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and maintaining the newly formed vascular beds has become a major goal of tissue engineering. The arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger animal models, which are surgically easier to perform, but have inherent limits for the understanding and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production of vascularized tissue. We also present the combined use of the model with 3D printed chambers, which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an understanding of the fundamental mechanisms involved in tissue generation de novo.


Subject(s)
Neovascularization, Physiologic , Tissue Engineering/methods , Animals , Arteries/growth & development , Cell Proliferation , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Regenerative Medicine/methods , Veins/growth & development
20.
J Cell Sci ; 132(15)2019 08 08.
Article in English | MEDLINE | ID: mdl-31289197

ABSTRACT

Fibrosis is associated with almost all forms of chronic cardiac and skeletal muscle diseases. The accumulation of extracellular matrix impairs the contractility of muscle cells contributing to organ failure. Transforming growth factor ß (TGF-ß) plays a pivotal role in fibrosis, activating pro-fibrotic gene programmes via phosphorylation of SMAD2/3 transcription factors. However, the mechanisms that control de-phosphorylation of SMAD2 and SMAD3 (SMAD2/3) have remained poorly characterized. Here, we show that tissue non-specific alkaline phosphatase (TNAP, also known as ALPL) is highly upregulated in hypertrophic hearts and in dystrophic skeletal muscles, and that the abrogation of TGF-ß signalling in TNAP-positive cells reduces vascular and interstitial fibrosis. We show that TNAP colocalizes and interacts with SMAD2. The TNAP inhibitor MLS-0038949 increases SMAD2/3 phosphorylation, while TNAP overexpression reduces SMAD2/3 phosphorylation and the expression of downstream fibrotic genes. Overall our data demonstrate that TNAP negatively regulates TGF-ß signalling and likely represents a mechanism to limit fibrosis.


Subject(s)
Alkaline Phosphatase/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transcription, Genetic , Transforming Growth Factor beta/metabolism , Alkaline Phosphatase/genetics , Animals , Fibrosis , Mice , Mice, Knockout , Myocardium/pathology , Smad2 Protein/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...