Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 4(7): 101113, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37467718

ABSTRACT

Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.


Subject(s)
Hydrogels , Neoplasm Recurrence, Local , Mice , Animals , Dogs , Hydrogels/therapeutic use , Neoplasm Recurrence, Local/prevention & control , Immunotherapy , Disease Models, Animal , Tumor Microenvironment
2.
Epigenetics Chromatin ; 15(1): 26, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843975

ABSTRACT

Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.


Subject(s)
Chromosomal Proteins, Non-Histone , RNA, Long Noncoding , X Chromosome Inactivation , Animals , Blastocyst/physiology , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Development , Genomic Imprinting , Mice , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome
3.
Sci Rep ; 12(1): 5776, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388081

ABSTRACT

Global changes in DNA methylation are observed in development and disease, and single-cell analyses are highlighting the heterogeneous regulation of these processes. However, technical challenges associated with single-cell analysis of DNA methylation limit these studies. We present single-cell transposable element methylation sequencing (scTEM-seq) for cost-effective estimation of average DNA methylation levels. By targeting high-copy SINE Alu elements, we achieve amplicon bisulphite sequencing with thousands of loci covered in each scTEM-seq library. Parallel transcriptome analysis is also performed to link global DNA methylation estimates with gene expression. We apply scTEM-seq to KG1a acute myeloid leukaemia (AML) cells, and primary AML cells. Our method reveals global DNA methylation heterogeneity induced by decitabine treatment of KG1a cells associated with altered expression of immune process genes. We also compare global DNA methylation estimates to expression of transposable elements and find a predominance of negative correlations. Finally, we observe co-ordinated upregulation of many transposable elements in a sub-set of decitabine treated cells. By linking global DNA methylation heterogeneity with transcription, scTEM-seq will refine our understanding of epigenetic regulation in cancer and beyond.


Subject(s)
DNA Transposable Elements , Leukemia, Myeloid, Acute , DNA Methylation , DNA Transposable Elements/genetics , Decitabine/pharmacology , Epigenesis, Genetic , Humans , Leukemia, Myeloid, Acute/genetics , Single-Cell Analysis
4.
Elife ; 92020 11 13.
Article in English | MEDLINE | ID: mdl-33186096

ABSTRACT

Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Genomic Imprinting/genetics , Animals , Blastocyst , Chromosomal Proteins, Non-Histone/genetics , DNA Methylation , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental/physiology , Genotype , Green Fluorescent Proteins , Male , Mice , Neural Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...