Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Article in English | MEDLINE | ID: mdl-38396173

ABSTRACT

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Pyrimidines , Pyrroles , Male , Humans , Docetaxel/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/pharmacology , Signal Transduction , Apoptosis , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism
2.
Sci Signal ; 17(825): eadf2670, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412255

ABSTRACT

More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling.


Subject(s)
Breast Neoplasms , Mitogen-Activated Protein Kinases , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Apoptosis , Mitogens , Multiomics , Proteomics , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , JNK Mitogen-Activated Protein Kinases
3.
Neurooncol Adv ; 5(1): vdad120, 2023.
Article in English | MEDLINE | ID: mdl-37885806

ABSTRACT

Background: Branched-chain aminotransferase 1 (BCAT1) has been proposed to drive proliferation and invasion of isocitrate dehydrogenase (IDH) wild-type glioblastoma cells. However, the Cancer Genome Atlas (TCGA) dataset shows considerable variation in the expression of this enzyme in glioblastoma. The aim of this study was to determine the role of BCAT1 in driving the proliferation and invasion of glioblastoma cells and xenografts that have widely differing levels of BCAT1 expression and the mechanism responsible. Methods: The activity of BCAT1 was modulated in IDH wild-type patient-derived glioblastoma cell lines, and in orthotopically implanted tumors derived from these cells, to examine the effects of BCAT1 expression on tumor phenotype. Results: In cells with constitutively high BCAT1 expression and a glycolytic metabolic phenotype, inducible shRNA knockdown of the enzyme resulted in reduced proliferation and invasion by increasing the concentration of α-ketoglutarate, leading to reduced DNA methylation, HIF-1α destabilization, and reduced expression of the transcription factor Forkhead box protein M1 (FOXM1). Conversely, overexpression of the enzyme increased HIF-1α expression and promoted proliferation and invasion. However, in cells with an oxidative phenotype and very low constitutive expression of BCAT1 increased expression of the enzyme had no effect on invasion and reduced cell proliferation. This occurred despite an increase in HIF-1α levels and could be explained by decreased TCA cycle flux. Conclusions: There is a wide variation in BCAT1 expression in glioblastoma and its role in proliferation and invasion is dependent on tumor subtype.

5.
Cancer Res ; 83(23): 3989-4004, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37725704

ABSTRACT

Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE: Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Receptors, Estrogen/metabolism , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/metabolism , Estrogen Antagonists , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cyclin-Dependent Kinase 4 , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
NPJ Breast Cancer ; 9(1): 64, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543694

ABSTRACT

Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.

8.
Biophys J ; 121(22): 4280-4298, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36230002

ABSTRACT

Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.


Subject(s)
Genes, p53 , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Kinetics , Mutation , Protein Unfolding , Protein Aggregates
9.
STAR Protoc ; 2(3): 100608, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34189473

ABSTRACT

13C nuclear spin hyperpolarization can increase the sensitivity of detection in an MRI experiment by more than 10,000-fold. 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool can be used clinically to assess tumor grade and response to treatment. We describe here an experimental protocol for using this technique in patient-derived and established cell line xenograft models of breast cancer in the mouse. For complete details on the use and execution of this protocol, please refer to Ros et al. (2020).


Subject(s)
Breast Neoplasms/metabolism , Pyruvic Acid/metabolism , Animals , Breast Neoplasms/pathology , Carbon Isotopes , Disease Models, Animal , Female , Heterografts , Humans , Magnetic Resonance Imaging/methods , Mice
10.
EJNMMI Res ; 10(1): 151, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33296043

ABSTRACT

INTRODUCTION: Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an 18F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET. METHODS: A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide (60 min synthesis time, > 98% radiochemical purity) has been developed, which was used to label the single cysteine residue in C2Am within 30 min at room temperature. Binding of 18F-C2Am to apoptotic and necrotic tumor cells was assessed in vitro, and also in vivo, by dynamic PET and biodistribution measurements in mice bearing human tumor xenografts treated with a TRAILR2 agonist or with conventional chemotherapy. C2Am detection of tumor cell death was validated by correlation of probe binding with histological markers of cell death in tumor sections obtained immediately after imaging. RESULTS: 18F-C2Am showed a favorable biodistribution profile, with predominantly renal clearance and minimal retention in spleen, liver, small intestine, bone and kidney, at 2 h following probe administration. 18F-C2Am generated tumor-to-muscle (T/m) ratios of 6.1 ± 2.1 and 10.7 ± 2.4 within 2 h of probe administration in colorectal and breast tumor models, respectively, following treatment with the TRAILR2 agonist. The levels of cell death (CC3 positivity) following treatment were 12.9-58.8% and 11.3-79.7% in the breast and colorectal xenografts, respectively. Overall, a 20% increase in CC3 positivity generated a one unit increase in the post/pre-treatment tumor contrast. Significant correlations were found between tracer uptake post-treatment, at 2 h post-probe administration, and histological markers of cell death (CC3: Pearson R = 0.733, P = 0.0005; TUNEL: Pearson R = 0.532, P = 0.023). CONCLUSION: The rapid clearance of 18F-C2Am from the blood pool and low kidney retention allowed the spatial distribution of cell death in a tumor to be imaged during the course of therapy, providing a rapid assessment of tumor treatment response. 18F-C2Am has the potential to be used in the clinic to assess early treatment response in tumors.

11.
Sci Signal ; 13(652)2020 10 06.
Article in English | MEDLINE | ID: mdl-33023985

ABSTRACT

Tumor-associated macrophages (TAMs) can exist in pro- and anti-inflammatory states. Anti-inflammatory TAMs (also referred to as M2-polarized) generally suppress antitumor immune responses and enhance the metastatic progression of cancer. To explore the mechanisms behind this phenomenon, we isolated macrophages from mice and humans, polarized them ex vivo, and examined their functional interaction with breast cancer cells in culture and in mice. We found that anti-inflammatory TAMs promoted a metabolic state in breast cancer cells that supported various protumorigenic phenotypes. Anti-inflammatory TAMs secreted the cytokine TGF-ß that, upon engagement of its receptors in breast cancer cells, suppressed the abundance of the transcription factor STAT1 and, consequently, decreased that of the metabolic enzyme succinate dehydrogenase (SDH) in the tumor cells. The decrease in SDH levels in tumor cells resulted in an accumulation of succinate, which enhanced the stability of the transcription factor HIF1α and reprogrammed cell metabolism to a glycolytic state. TAM depletion-repletion experiments in a 4T1 mouse model additionally revealed that anti-inflammatory macrophages promoted HIF-associated vascularization and expression of the immunosuppressive protein PD-L1 in tumors. The findings suggest that anti-inflammatory TAMs promote tumor-associated angiogenesis and immunosuppression by altering metabolism in breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Macrophages/metabolism , Mammary Neoplasms, Experimental/metabolism , Succinate Dehydrogenase/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , RNA Interference , Signal Transduction , Succinate Dehydrogenase/genetics , Transforming Growth Factor beta/metabolism
12.
Cancer Cell ; 38(4): 516-533.e9, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32976773

ABSTRACT

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Forkhead Box Protein M1/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Female , Forkhead Box Protein M1/genetics , Fulvestrant/administration & dosage , Humans , Imidazoles/administration & dosage , MCF-7 Cells , Magnetic Resonance Imaging/methods , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Oxazepines/administration & dosage , Receptors, Estrogen/metabolism , Tamoxifen/administration & dosage , Xenograft Model Antitumor Assays/methods
13.
Cancer Res ; 79(14): 3557-3569, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31088837

ABSTRACT

Metabolic imaging has been widely used to measure the early responses of tumors to treatment. Here, we assess the abilities of PET measurement of [18F]FDG uptake and MRI measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes in glycolysis following treatment-induced cell death in human colorectal (Colo205) and breast adenocarcinoma (MDA-MB-231) xenografts in mice. A TRAIL agonist that binds to human but not mouse cells induced tumor-selective cell death. Tumor glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced rapid reduction in lactate labeling. This decrease, which correlated with an increase in histologic markers of cell death and preceded decrease in tumor volume, reflected reduced flux from glucose to lactate and decreased lactate concentration. However, [18F]FDG uptake and phosphorylation were maintained following treatment, which has been attributed previously to increased [18F]FDG uptake by infiltrating immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the most [18F]FDG-avid cell type present, yet they represented <5% of the cells present in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is therefore a more sensitive marker of the early decreases in glycolytic flux that occur following cell death than PET measurements of [18F]FDG uptake. SIGNIFICANCE: These findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting early changes in glycolysis following treatment-induced tumor cell death.


Subject(s)
Colorectal Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/diagnostic imaging , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Animals , Antineoplastic Agents/pharmacology , Carbon Isotopes , Cell Death/physiology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Fluorodeoxyglucose F18/pharmacokinetics , Glycolysis/drug effects , Heterografts , Humans , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Mice, Inbred BALB C , Mice, Nude , Positron-Emission Tomography/methods , Pyruvic Acid/metabolism , Radiopharmaceuticals/pharmacokinetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
16.
Sci Transl Med ; 10(466)2018 11 07.
Article in English | MEDLINE | ID: mdl-30404863

ABSTRACT

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve (AUC) >0.99 compared to AUC <0.80 without fragmentation features. Increased identification of cfDNA from patients with glioma, renal, and pancreatic cancer was achieved with AUC > 0.91 compared to AUC < 0.5 without fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA detection and could complement or provide an alternative to deeper sequencing of cfDNA.


Subject(s)
Circulating Tumor DNA/analysis , Circulating Tumor DNA/chemistry , Animals , Circulating Tumor DNA/blood , DNA Copy Number Variations/genetics , Genome, Human , Humans , Machine Learning , Mice , Mutation/genetics , Whole Genome Sequencing
17.
Cancer Res ; 78(18): 5408-5418, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30054337

ABSTRACT

13C MRI of hyperpolarized [1-13C]pyruvate metabolism has been used in oncology to detect disease, investigate disease progression, and monitor response to treatment with a view to guiding treatment in individual patients. This technique has translated to the clinic with initial studies in prostate cancer. Here, we use the technique to investigate its potential uses in patients with glioblastoma (GB). We assessed the metabolism of hyperpolarized [1-13C]pyruvate in an orthotopically implanted cell line model (U87) of GB and in patient-derived tumors, where these were produced by orthotopic implantation of cells derived from different patients. Lactate labeling was higher in the U87 tumor when compared with patient-derived tumors, which displayed intertumoral heterogeneity, reflecting the intra- and intertumoral heterogeneity in the patients' tumors from which they were derived. Labeling in some patient-derived tumors could be observed before their appearance in morphologic images, whereas in other tumors it was not significantly greater than the surrounding brain. Increased lactate labeling in tumors correlated with c-Myc-driven expression of hexokinase 2, lactate dehydrogenase A, and the monocarboxylate transporters and was accompanied by increased radioresistance. Because c-Myc expression correlates with glioma grade, this study demonstrates that imaging with hyperpolarized [1-13C]pyruvate could be used clinically with patients with GB to determine disease prognosis, to detect early responses to drugs that modulate c-Myc expression, and to select tumors, and regions of tumors for increased radiotherapy dose.Significance: Metabolic imaging with hyperpolarized [1-13C]pyruvate detects low levels of c-Myc-driven glycolysis in patient-derived glioblastoma models, which, when translated to the clinic, could be used to detect occult disease, determine disease prognosis, and target radiotherapy. Cancer Res; 78(18); 5408-18. ©2018 AACR.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Disease Models, Animal , Doxycycline/pharmacology , Exome , Female , Glioblastoma/diagnostic imaging , Glycolysis , Heterografts , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Neoplasm Transplantation , Prognosis , RNA, Small Interfering/metabolism , Rats , Rats, Nude
18.
Clin Cancer Res ; 23(22): 6893-6903, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28821560

ABSTRACT

Purpose: The development of new treatments and their deployment in the clinic may be assisted by imaging methods that allow an early assessment of treatment response in individual patients. The C2A domain of Synaptotagmin-I (C2Am), which binds to the phosphatidylserine (PS) exposed by apoptotic and necrotic cells, has been developed as an imaging probe for detecting cell death. Multispectral optoacoustic tomography (MSOT) is a real-time and clinically applicable imaging modality that was used here with a near infrared (NIR) fluorophore-labeled C2Am to image tumor cell death in mice treated with a TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2) agonist and with 5-fluorouracil (5-FU).Experimental Design: C2Am was labeled with a NIR fluorophore and injected intravenously into mice bearing human colorectal TRAIL-sensitive Colo205 and TRAIL-resistant HT-29 xenografts that had been treated with a potent agonist of TRAILR2 and in Colo205 tumors treated with 5-FU.Results: Three-dimensional (3D) MSOT images of probe distribution showed development of tumor contrast within 3 hours of probe administration and a signal-to-background ratio in regions containing dead cells of >10 after 24 hours. A site-directed mutant of C2Am that is inactive in PS binding showed negligible binding. Tumor retention of the active probe was strongly correlated (R2 = 0.97, P value < 0.01) with a marker of apoptotic cell death measured in histologic sections obtained post mortem.Conclusions: The rapid development of relatively high levels of contrast suggests that NIR fluorophore-labeled C2Am could be a useful optoacoustic imaging probe for detecting early therapy-induced tumor cell death in the clinic. Clin Cancer Res; 23(22); 6893-903. ©2017 AACR.


Subject(s)
Cell Death , Molecular Imaging , Photoacoustic Techniques , Tomography , Animals , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Female , Flow Cytometry , Fluorescent Dyes , Heterografts , Humans , Mice , Microscopy, Fluorescence , Molecular Imaging/methods , Tomography/methods
19.
Endocrinol Diabetes Nutr ; 64(1): 4-10, 2017 01.
Article in English, Spanish | MEDLINE | ID: mdl-28440769

ABSTRACT

BACKGROUND AND OBJECTIVE: Advanced glycation end-products (AGEs) are a marker of metabolic memory. Their levels increases when oxidative stress, inflammation, or chronic hyperglycemia exists. The role of morbid obesity in AGE levels, and the impact of bariatric surgery on them are unknown. PATIENTS AND METHOD: An observational study with three sex- and age-matched cohorts: 52 patients with obesity, 46 patients undergoing bariatric surgery in the last 5 years, and 46 control subjects. AGE were measured using skin autofluorescence (SAF) in the forearm with an AGE Reader™ (DiagnOptics Technologies, Groningen, The Netherlands). Presence of metabolic syndrome was assessed. RESULTS: Patients with morbid obesity had higher SAF levels (2.14±0.65AU) than non-obese subjects (1.81±0.22AU; P<.001), which was mainly attributed to obese subjects with metabolic syndrome (2.44±0.67 vs. 1.86±0.51AU; P<.001). After bariatric surgery, SAF continued to be high (2.18±0.40AU), and greater as compared to the non-obese population (P<.001). A multivariate analysis showed that age and presence of metabolic syndrome (but not sex or body mass index) were independently associated to SAF (R2=0.320). CONCLUSION: SAF is increased in patients with morbid obesity and metabolic syndrome, mainly because of the existence of type 2 diabetes mellitus. In the first 5 years following bariatric surgery, weight loss and metabolic improvement are not associated with a parallel decrease in subcutaneous AGE levels.


Subject(s)
Bariatric Surgery , Glycation End Products, Advanced/blood , Obesity, Morbid/blood , Adult , Biomarkers , Blood Glucose/analysis , Body Mass Index , Comorbidity , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/epidemiology , Middle Aged , Obesity, Morbid/epidemiology , Obesity, Morbid/surgery , Optical Imaging , Postoperative Period , Research Design , Retrospective Studies , Skin/diagnostic imaging , Subcutaneous Tissue , Weight Loss
20.
Endocrinol. diabetes nutr. (Ed. impr.) ; 64(1): 4-10, ene. 2017. graf, tab
Article in Spanish | IBECS | ID: ibc-171232

ABSTRACT

Antecedentes y objetivo: Los productos finales de glicación avanzada (AGE) son un indicador de memoria metabólica. Su concentración se incrementa cuando existe estrés oxidativo, inflamación o hiperglucemia crónica. Se desconoce el papel de la obesidad mórbida en su concentración, así como la influencia que la cirugía bariátrica ejerce sobre ellos. Pacientes y método: Estudio observacional con 3 cohortes equiparadas por sexo y edad: 52 pacientes con obesidad, 46 sometidos a cirugía bariátrica en los últimos 5 años y 46 sujetos control. La determinación de los AGE se realizó mediante autofluorescencia cutánea (SAF) del antebrazo con un AGE Reader(TM) (DiagnOptics Technologies, Groningen, Países Bajos). Se evaluó la presencia de síndrome metabólico. Resultados: Los sujetos con obesidad mórbida presentaron una SAF (2,14±0,65AU) superior a la de la población no obesa (1,81±0,22AU; p<0,001). Este incremento fue a expensas de aquellos sujetos obesos con síndrome metabólico (2,44±0,67 vs. 1,86±0,51AU; p<0,001). Tras la cirugía bariátrica, la SAF se mantuvo elevada (2,18±0,40AU) y superior a la de la población no obesa (p<0,001). El análisis multivariante mostró que la edad y la presencia de síndrome metabólico (pero no el sexo, ni el índice de masa corporal) se asociaron independientemente con la SAF (R2=0,320). Conclusiones: En la obesidad mórbida acompañada de síndrome metabólico existe un incremento de la SAF, a expensas principalmente de la presencia de diabetes tipo 2. En los primeros 5 años tras la cirugía, la pérdida ponderal y la mejoría metabólica no se acompañan de un descenso paralelo de la concentración tisular de AGE (AU)


Background and objective: Advanced glycation end-products (AGEs) are a marker of metabolic memory. Their levels increases when oxidative stress, inflammation, or chronic hyperglycemia exists. The role of morbid obesity in AGE levels, and the impact of bariatric surgery on them are unknown. Patients and method: An observational study with three sex- and age-matched cohorts: 52 patients with obesity, 46 patients undergoing bariatric surgery in the last 5 years, and 46 control subjects. AGE were measured using skin autofluorescence (SAF) in the forearm with an AGE Reader(TM) (DiagnOptics Technologies, Groningen, The Netherlands). Presence of metabolic syndrome was assessed. Results: Patients with morbid obesity had higher SAF levels (2.14±0.65AU) than non-obese subjects (1.81±0.22AU; P<.001), which was mainly attributed to obese subjects with metabolic syndrome (2.44±0.67 vs. 1.86±0.51AU; P<.001). After bariatric surgery, SAF continued to be high (2.18±0.40AU), and greater as compared to the non-obese population (P<.001). A multivariate analysis showed that age and presence of metabolic syndrome (but not sex or body mass index) were independently associated to SAF (R2=0.320). Conclusion: SAF is increased in patients with morbid obesity and metabolic syndrome, mainly because of the existence of type 2 diabetes mellitus. In the first 5 years following bariatric surgery, weight loss and metabolic improvement are not associated with a parallel decrease in subcutaneous AGE levels (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Obesity, Morbid/complications , Obesity, Morbid/surgery , Glycation End Products, Advanced/analysis , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Glycation End Products, Advanced/administration & dosage , Cohort Studies , Bariatric Surgery/methods , Cross-Sectional Studies/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...