Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685886

ABSTRACT

Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.


Subject(s)
Macular Degeneration , Retinal Degeneration , Retinitis Pigmentosa , Humans , Retinal Degeneration/therapy , Macular Degeneration/therapy , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Biomarkers , Blindness , Retina
2.
Int J Mol Sci ; 24(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36982479

ABSTRACT

Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.


Subject(s)
Diabetic Retinopathy , Zebrafish , Animals , Humans , Infant, Newborn , Larva/metabolism , Retina/metabolism , Vision, Ocular , Diabetic Retinopathy/metabolism , Mammals
3.
Toxics, v. 11, n. 11, 896, out. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5196

ABSTRACT

The increasing number of studies reporting the risks of the exposure to pesticides aligned with the intensified use of such hazardous chemicals has emerged as a pressing contemporary issue, notably due to the potential effects to both the environment and human health. Pesticides, while broadly applied in modern agriculture for pest control and crop protection, have raised concerns due to their unintended effects on non-target organisms. The immune system exerts a key role in the protection against the exposome, which could result in cellular imbalances and tissue damage through the inflammatory response. Pesticides, which encompass a diverse array of chemicals, have been linked to inflammation in experimental models. Therefore, the aim of this review is to discuss the increasing concern over the risks of pesticide exposure focusing on the effects of various chemical classes on inflammation by covering, as broadly as possible, different experimental approaches as well as the multiple or co-exposure of pesticides. Overall, pesticides potentially induce inflammation in different experimental models, manifested through skin irritation, respiratory impairment, or systemic effects. The connection between pesticides and inflammation highlights the importance of proper handling and regulation of these substances and underscores the need for research into safer and sustainable practices to reduce our reliance on synthetic pesticides and fertilizers.

4.
Int. J. Mol. Sci. ; 24(17): 13079, 2023.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5085

ABSTRACT

Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.

5.
Int J Mol Sci, v. 24, n. 6, 5387, mar. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4840

ABSTRACT

Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.

6.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293259

ABSTRACT

The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.


Subject(s)
Dysbiosis , Pesticides , Humans , Dysbiosis/chemically induced , Pesticides/toxicity , Epithelium , Intestines , Signal Transduction , Intestinal Mucosa
7.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743088

ABSTRACT

To discover new molecules or review the biological activity and toxicity of therapeutic substances, drug development, and research relies on robust biological systems to obtain reliable results. Phenotype-based screenings can transpose the organism's compensatory pathways by adopting multi-target strategies for treating complex diseases, and zebrafish emerged as an important model for biomedical research and drug screenings. Zebrafish's clear correlation between neuro-anatomical and physiological features and behavior is very similar to that verified in mammals, enabling the construction of reliable and relevant experimental models for neurological disorders research. Zebrafish presents highly conserved physiological pathways that are found in higher vertebrates, including mammals, along with a robust behavioral repertoire. Moreover, it is very sensitive to pharmacological/environmental manipulations, and these behavioral phenotypes are detected in both larvae and adults. These advantages align with the 3Rs concept and qualify the zebrafish as a powerful tool for drug screenings and pre-clinical trials. This review highlights important behavioral domains studied in zebrafish larvae and their neurotransmitter systems and summarizes currently used techniques to evaluate and quantify zebrafish larvae behavior in laboratory studies.


Subject(s)
Neurotransmitter Agents , Zebrafish , Animals , Behavior, Animal/physiology , Drug Evaluation, Preclinical/methods , Larva/physiology , Mammals , Phenotype , Zebrafish/genetics
8.
Cells ; 11(9)2022 04 26.
Article in English | MEDLINE | ID: mdl-35563763

ABSTRACT

Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen-host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.


Subject(s)
Eye Injuries , Retinal Diseases , Zika Virus Infection , Zika Virus , Animals , Larva , Zebrafish , Zika Virus/physiology
9.
Int J Mol Sci, v. 23, 20, 12402, out. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4667

ABSTRACT

The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.

10.
Int J Mol Sci, v. 23, n. 12, 6647, jun. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4415

ABSTRACT

To discover new molecules or review the biological activity and toxicity of therapeutic substances, drug development, and research relies on robust biological systems to obtain reliable results. Phenotype-based screenings can transpose the organism’s compensatory pathways by adopting multi-target strategies for treating complex diseases, and zebrafish emerged as an important model for biomedical research and drug screenings. Zebrafish’s clear correlation between neuro-anatomical and physiological features and behavior is very similar to that verified in mammals, enabling the construction of reliable and relevant experimental models for neurological disorders research. Zebrafish presents highly conserved physiological pathways that are found in higher vertebrates, including mammals, along with a robust behavioral repertoire. Moreover, it is very sensitive to pharmacological/environmental manipulations, and these behavioral phenotypes are detected in both larvae and adults. These advantages align with the 3Rs concept and qualify the zebrafish as a powerful tool for drug screenings and pre-clinical trials. This review highlights important behavioral domains studied in zebrafish larvae and their neurotransmitter systems and summarizes currently used techniques to evaluate and quantify zebrafish larvae behavior in laboratory studies.

11.
Cells, v. 11, n. 9, p. 157, abr. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4316

ABSTRACT

Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen–host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.

12.
Environ Sci Pollut Res Int ; 27(23): 29341-29351, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32440876

ABSTRACT

The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Ethinyl Estradiol , Reproduction
13.
Arch Environ Contam Toxicol ; 77(3): 443-451, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31190101

ABSTRACT

Environmental contamination caused by the human occupancy and economic activities that generate a wide range of contaminated effluents that reach natural water resources, is a current reality. Residues of agrichemicals used in plant production were detected in different environments and in different countries. Among these agrochemicals, we studied a glyphosate-based herbicide (GBH), a fipronil-based insecticide (FBI), and their mixtures (GBH + FBI). Zebrafish exposed to 3 and 5 mg/L of GBH spend more time in the top zone and less time in the bottom zone. Fish exposed to 0.009 and 0.018 mg/L of FBI spent less time in the bottom zone, whereas zebrafish exposed to the three GBH + FBI mixtures spend more time in the top zone compared with unexposed control fish. This clear anxiolytic pattern, in an environmental context, can directly impair the ability of fish to avoid or evade predators. We concluded that both glyphosate-based herbicide and fipronil-based insecticide and their mixtures alter zebrafish behavior, which may result in significant repercussions on the maintenance of the species as well as on the food chain and the ecosystem.


Subject(s)
Glycine/analogs & derivatives , Pesticides/toxicity , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Behavior, Animal/drug effects , Ecosystem , Female , Glycine/toxicity , Humans , Male , Predatory Behavior , Glyphosate
14.
Sci Rep ; 7(1): 14121, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074994

ABSTRACT

The ability to avoid and escape from predators are clearly relevant behaviors from the ecological perspective and directly interfere with the survival of organisms. Detected in the aquatic environment, risperidone can alter the behavior of exposed species. Considering the risk of exposure in the early stages of life, we exposed zebrafish embryos to risperidone during the first 5 days of life. Risperidone caused hyperactivity in exposed larvae, which in an environmental context, the animals may be more vulnerable to predation due to greater visibility or less perception of risk areas.


Subject(s)
Behavior, Animal/drug effects , Drug Residues/pharmacology , Larva/drug effects , Psychotropic Drugs/pharmacology , Risperidone/pharmacology , Water Pollutants, Chemical/pharmacology , Zebrafish , Animals , Dose-Response Relationship, Drug
15.
Gen Comp Endocrinol ; 252: 236-238, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28716505

ABSTRACT

In this article, we show that the tyrosine hydroxylase inhibitor α-Methyl-l-tyrosine (AMPT) decreased the responsiveness of the zebrafish stress axis to an acute stressful challenge. These effects were specific for responses to stimulation, since unstimulated (basal) cortisol levels were not altered by AMPT. Moreover, AMPT decreased the stress response 15min after stimulation, but not after that time period. To our knowledge, this is the first report about the effects of AMPT on the neuroendocrine axis of adult zebrafish in acute stress responses. Overall, these results suggest a mechanism of catecholamine-glucocorticoid interplay in neuroendocrine responses of fish, pointing an interesting avenue for physiological research, as well as an important endpoint that can be disrupted by environmental contamination. Further experiments will unravel the mechanisms by which AMPT blocked the cortisol response.


Subject(s)
Enzyme Inhibitors/pharmacology , Stress, Physiological/drug effects , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Zebrafish/physiology , alpha-Methyltyrosine/pharmacology , Animals , Female , Hydrocortisone/blood , Male , Tyrosine 3-Monooxygenase/metabolism , Zebrafish/blood
16.
Zebrafish ; 14(1): 51-59, 2017 02.
Article in English | MEDLINE | ID: mdl-27672711

ABSTRACT

In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.


Subject(s)
Glucose/analysis , Hydrocortisone/analysis , Physical Conditioning, Animal/methods , Swimming , Zebrafish/physiology , Animals , Behavior, Animal , Creatine Kinase/analysis , Energy Metabolism , Models, Animal , Stress, Physiological , Zebrafish/blood
17.
Sci Rep ; 6: 37612, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27874070

ABSTRACT

Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.


Subject(s)
Aripiprazole/toxicity , Stress, Physiological/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Female , Hydrocortisone/metabolism , Male
18.
Arch Environ Contam Toxicol ; 71(3): 415-22, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27423874

ABSTRACT

In agriculture intensive areas, fishponds and natural water bodies located in close proximity to these fields receive water with variable amounts of agrichemicals. Consequently, toxic compounds reach nontarget organisms. For instance, aquatic organisms can be exposed to tebuconazole-based fungicides (TBF), glyphosate-based herbicides (GBH), and atrazine-based herbicides (ABH) that are potentially dangerous, which motivates the following question: Are these agrichemicals attractant or aversive to fish? To answer this question, adult zebrafish were tested in a chamber that allows fish to escape from or seek a lane of contaminated water. This attraction and aversion paradigm was evaluated with zebrafish in the presence of an acute contamination with these compounds. We showed that only GBH was aversive to fish, whereas ABH and TBF caused neither attraction nor aversion for zebrafish. Thus, these chemicals do not impose an extra toxic risk by being an attractant for fish, although TBF and ABH can be more deleterious, because they induce no aversive response. Because the uptake and bioaccumulation of chemicals in fish seems to be time- and dose-dependent, a fish that remains longer in the presence of these substances tends to absorb higher concentrations than one that escapes from contaminated sites.


Subject(s)
Agrochemicals/toxicity , Fishes/physiology , Water Pollutants, Chemical/toxicity , Animals , Avoidance Learning , Behavior, Animal , Toxicity Tests , Zebrafish
19.
J Toxicol Environ Health A ; 79(1): 1-7, 2016.
Article in English | MEDLINE | ID: mdl-26699931

ABSTRACT

Fish production ponds and natural water body areas located in close proximity to agricultural fields receive water with variable amounts of agrochemicals, and consequently, compounds that produce adverse effects may reach nontarget organisms. The aim of this study was to investigate whether waterborne methyl-parathion-based insecticide (MPBI) affected gene expression patterns of brain glucocorticoid receptor (GR), steroidogenic acute regulatory protein (StAR), and heat shock protein 70 (hsp70) in adult zebrafish (Danio rerio) exposed to this chemical for 96 h. Treated fish exposed to MPBI-contaminated water showed an inhibition of brain StAR and hsp70 gene expression. Data demonstrated that MPBI produced a decrease brain StAR and hsp70 gene expression.


Subject(s)
Brain Chemistry/drug effects , HSP70 Heat-Shock Proteins/biosynthesis , Insecticides/toxicity , Methyl Parathion/toxicity , Phosphoproteins/biosynthesis , Agrochemicals/toxicity , Animals , Gene Expression/drug effects , Male , Receptors, Glucocorticoid/biosynthesis , Receptors, Glucocorticoid/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish
20.
PLoS One ; 10(10): e0140800, 2015.
Article in English | MEDLINE | ID: mdl-26473477

ABSTRACT

The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish.


Subject(s)
Anti-Anxiety Agents/adverse effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Risperidone/adverse effects , Water Pollutants, Chemical/adverse effects , Zebrafish/metabolism , Animals , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Hypothalamo-Hypophyseal System/pathology , Pituitary-Adrenal System/pathology , Risperidone/pharmacology , Water Pollutants, Chemical/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...