Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Biochimie ; 200: 68-78, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35613667

ABSTRACT

Vascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF). The venom was fractionated by reversed phase chromatography on FPLC system (Fast Protein Liquid Chromatography) and the eluted fractions were submitted to an ELISA assay using an anti-VEGF-F antibody, for identification of svVEGF. Positive fractions for svVEGF were submitted to SDS-PAGE and to an anion exchange chromatography to isolate the molecule. The subfractions were analyzed by ELISA and SDS-PAGE and six of them presented svVEGFs, named CdcVEGF1 (Q23-3), CdcVEGF2 (Q24-3), CdcVEGF3 (Q24-4), CdcVEGF4 (Q25-3), CdcVEGF5 (Q25-4), and CdcVEGF6 (Q25-5). Their structural characterization was accomplished by mass spectrometry analysis using MALDI-TOF to determine their molecular masses and UPLC-ESI-QTOF to determine their amino acid sequence. Interestingly, all isolated CdcVEGFs induced angiogenesis on HUVEC cells through tube formation on Matrigel when compared to culture medium (negative control). Moreover, CdcVEGF2 and CdcVEGF3 also induced a significant increase in tube formation when compared to the positive control (basic fibroblast growth factor - bFGF). Additionally, crotalid antivenom produced by the Instituto Butantan was able to recognize CdcVEGFs, demonstrating to be immunogenic. This study demonstrates that snake venom cocktail can reveal novel and important molecules, which are potential molecular tools to study diverse biological processes, such as angiogenesis.


Subject(s)
Crotalid Venoms , Crotalus , Animals , Crotalid Venoms/chemistry , Snake Venoms , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
2.
Int J Mol Sci ; 21(13)2020 07 01.
Article in English | MEDLINE | ID: mdl-32630308

ABSTRACT

Gliomas are responsible for more than 60% of all primary brain tumors. Glioblastoma multiforme (GBM), a grade IV tumor (WHO), is one of the most frequent and malignant gliomas. Despite two decades of advances in the discovery of new markers for GBM, the chemotherapy of choice falls to temozolomide after surgery and radiotherapy, which are not enough to increase the survival of patients to more than 15 months. It is urgent to discover new anti-glioma compounds. Many compounds derived from natural products have been used in the development of anti-tumor drugs. In this work, we have screened six low molecular weight sesquiterpene lactones, isolated from Eremanthus spp., and studied their function as anti-proliferative agents against GBM strains. We demonstrated that two of them, goyazensolide and lychnofolide, were effective in reducing cell viability, preventing the formation of anchorage-dependent colony and were able to pass through a mimetic blood-brain barrier making them candidates for glioma therapy, being more potent than temozolomide, according to in vitro assays for the cell lines tested. Proteomic analysis revealed a number of altered proteins involved in glycolytic metabolism and cellular catabolism.


Subject(s)
Lactones/pharmacology , Vernonia/metabolism , Antineoplastic Agents/pharmacology , Asteraceae , Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Brazil , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Furans/pharmacology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/metabolism , Humans , Lactones/metabolism , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Sesterterpenes/pharmacology , Vernonia/physiology
3.
Food Sci Nutr ; 8(1): 683-693, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993192

ABSTRACT

Micronutrients and their metabolites are cofactors in proteins involved in lipid metabolism. The present study was a subproject of the Harmonized Micronutrient Project (ClinTrials.gov # NCT01823744). Twenty participants were randomly selected from 136 children and adolescents that consumed a daily dose of 12 vitamins and 5 minerals supplementation for 6 weeks. The 20 individuals were divided into two pools of 10 individuals, according to their lipid profile at baseline (Pool 1 with lower triglycerides, LDL, and VLDL). The individuals were analyzed at baseline, after 6 weeks of daily supplementation, and after 6 weeks of a washout period in relation to anthropometric, body composition, food intake, lipid profile, micronutrient levels, and iTRAQ proteomic data. Genetic ancestry and its association with vitamin serum levels were also determined. After supplementation, LDL levels decreased while alpha-tocopherol and pantothenic acid levels increased in pool 2; lipid profiles in pool 1 did not change but had higher plasma levels of pantothenic acid, pyridoxal, and pyridoxic acid. In pool 2, expression of some proteins increased, and expression of other ones decreased after intervention, while in pool 1, the same proteins responded inversely or did not change their levels. Plasma alpha-tocopherol and Native American genetic ancestry explained a significant fraction of LDL plasma levels at baseline and in response to the intervention. After intervention, changes in expression of alpha-1 antitrypsin, haptoglobin, Ig alpha-1 chain C region, plasma protease C1 inhibitor, alpha-1-acid glycoprotein 1, fibrinogen alpha, beta, and gamma-chain in individuals in pool 2 may be associated with levels of LDL and vitamin E. Vitamin E and Native American genetic ancestry may also be implicated in changes of vitamin E and LDL levels. The results of this pilot study must be validated in future studies with larger sample size or in in vitro studies.

4.
Appl Biochem Biotechnol ; 191(3): 1111-1126, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31960367

ABSTRACT

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-ß-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues. The peptide mass fingerprint and amino acid sequencing of the XPS and XSCB enzymes showed primary structure similarities with an endo-1,4-ß-xylanase from Aspergillus clavatus (XYNA_ASPCL). Both enzyme preparations presented good thermal stability at 50 °C and were stable over a wide range of pH and Vmax up to 2450 U/mg for XPS. XPS and XSCB were almost fully stable even after 24 h of incubation in the presence of up to 3 M NaCl, and their activity were not affected by 500 mM NaCl. Both enzyme preparations were capable of hydrolyzing paper sludge and sugarcane bagasse to release reducing sugars. These characteristics make this xylanase attractive to be used in the hydrolysis of biomass, particularly with brackish water or seawater.


Subject(s)
Aspergillus/enzymology , Cellulose/chemistry , Endo-1,4-beta Xylanases/metabolism , Sewage , Biomass , Carbohydrates/chemistry , Cellulase/metabolism , Cellulose/classification , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Paper , Peptides/chemistry , Phylogeny , Protein Conformation , Saccharum , Temperature , Water Pollutants, Chemical/analysis , Water Pollution , Water Purification/methods
5.
Int J Biol Macromol ; 140: 556-567, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31419561

ABSTRACT

CRISPs represent a family of cysteine-rich secretory proteins with molecular mass between 20 and 30 kDa and a highly conserved specific pattern of 16 cysteine residues. In this work, we isolated and characterized a novel CRISP from Bothrops alternatus venom, named BaltCRP, also evaluating its effects on different isoforms of potassium channels (Kv1.1; Kv1.2; Kv1.3; Kv1.4; Kv1.5; Kv2.1; Kv10.1 and Shaker) and on inflammatory processes in vivo. This toxin has a molecular mass of 24.4 kDa and pI around 7.8. Electrophysiological experiments using voltage clamp techniques showed that BaltCRP can affect the currents of Kv1.1; Kv1.3; Kv2.1 and Shaker channels. In addition, BaltCRP induced inflammatory responses characterized by an increase of leukocytes in the peritoneal cavity of mice, also stimulating the production of mediators such IL-6, IL-1ß, IL-10, PGE2, PGD2, LTB4 and CysLTs. Altogether, these results demonstrated that BaltCRP can help understand the biological effects evoked by snake venom CRISPs, which could eventually lead to the development of new molecules with therapeutic potential.


Subject(s)
Bothrops , Crotalid Venoms/chemistry , Cysteine/chemistry , Potassium Channels/chemistry , Amino Acid Sequence/genetics , Animals , Biological Transport/drug effects , Crotalid Venoms/isolation & purification , Crotalid Venoms/pharmacology , Humans , Inflammation/genetics , Inflammation/pathology , Leukocytes/drug effects , Leukocytes/pathology , Mice , Molecular Weight , Patch-Clamp Techniques , Potassium Channels/classification , Potassium Channels/genetics , Viper Venoms/chemistry
6.
Prep Biochem Biotechnol ; 49(7): 639-648, 2019.
Article in English | MEDLINE | ID: mdl-31131710

ABSTRACT

There are many diseases linked to oxidative stress, including cancer. Importantly, endogenous antioxidants are insufficient to protect against this process. Peptides derived from food proteins produced by hydrolysis have been investigated as exogenous antioxidants. The present study aimed to identify novel peptides with antioxidant potential produced from egg and milk proteins hydrolysis with two new fungal proteases isolated from Eupenicillium javanicum and Myceliophthora thermophila. The degree of hydrolysis at several time points was calculated and correlated to DPPH scavenging and metal chelating assays, all hydrolysates presented antioxidant activity. Casein hydrolyzed by the M. thermophila protease showed the best antioxidant activity. The identified sequences showed that the proportions of amino acids that influence antioxidant activity support the antioxidant assay. Our data reveal the conditions necessary for the successful generation of antioxidant peptides using two novel fungal proteases. This opens a potential new avenue for the design and manufacture of antioxidant molecules.


Subject(s)
Albumins/chemistry , Antioxidants/chemistry , Caseins/chemistry , Egg Proteins/chemistry , Peptides/chemistry , Whey Proteins/chemistry , Albumins/pharmacology , Animals , Antioxidants/pharmacology , Caseins/pharmacology , Egg Proteins/pharmacology , Eupenicillium/enzymology , Peptide Hydrolases/chemistry , Peptides/pharmacology , Proteolysis , Sordariales/enzymology , Whey Proteins/pharmacology
7.
J Proteomics ; 191: 153-165, 2019 01 16.
Article in English | MEDLINE | ID: mdl-29462664

ABSTRACT

Individual variations studies are important to understand the snakebite envenoming and to improve the antivenom production and its effectiveness. In this way, the objective of this study was a comparative analysis of intraspecific variation in the venom composition of 22 Crotalus durissus collilineatus specimens through proteomic techniques. Venoms were fractionated by RP-FPLC, and analyzed by SDS-PAGE and mass spectrometry. Although similar, chromatographic and electrophoretic profiles showed significant qualitative and quantitative differences. Some venom components were identified for the very first time in C. d. collilineatus, such as glutathione peroxidase, nerve growth factor, 5'-nucleotidase, angiotensin-converting enzyme, carboxypeptidase, phosphodiesterase, glutaminyl cyclase and phospholipase B. Regarding hyaluronidase activity, 2 venoms did not present detectable enzyme activity in the tested amounts. Additionally, in vivo crotalic envenoming in mice showed that venoms from different specimens resulted in diversified changes of biochemical and immunological parameters, such as creatine kinase and interleukin 6. This study demonstrated significant intraspecific variations in the venom of C. d. collilineatus, which may impact the production and effectiveness of the antivenom therapy. BIOLOGICAL SIGNIFICANCE: This study performed the proteomic and functional analyzes of 22 C. d. collilineatus individual venoms and verified the occurrence of quali and quantitative variations among them. The venoms evaluated caused envenomings with different changes in biochemical and immunological parameters. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness. In addition, this study was able to identify for the first time 8 different proteins in this subspecies venom, increasing knowledge about its composition and showing that it is a source of these proteins with possible biotechnological applications.


Subject(s)
Crotalid Venoms/analysis , Crotalus , Proteomics/methods , Animals , Biodiversity , Chromatography, Reverse-Phase , Crotalid Venoms/chemistry , Crotalid Venoms/enzymology , Crotalid Venoms/pharmacology , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Mice , Snake Bites , Species Specificity
8.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Article in English | MEDLINE | ID: mdl-30580571

ABSTRACT

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Subject(s)
Disulfides/chemistry , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 1/metabolism , NADPH Oxidases/chemistry , Protein Disulfide-Isomerases/chemistry , Animals , Cell Movement , Cells, Cultured , Enzyme Activation , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Oxidation-Reduction , Superoxides/metabolism
9.
Article in English | MEDLINE | ID: mdl-30377432

ABSTRACT

BACKGROUND: In recent decades, snake venom disintegrins have received special attention due to their potential use in anticancer therapy. Disintegrins are small and cysteine-rich proteins present in snake venoms and can interact with specific integrins to inhibit their activities in cell-cell and cell-ECM interactions. These molecules, known to inhibit platelet aggregation, are also capable of interacting with certain cancer-related integrins, and may interfere in important processes involved in carcinogenesis. Therefore, disintegrin from Crotalus durissus collilineatus venom was isolated, structurally characterized and evaluated for its toxicity and ability to interfere with cell proliferation and migration in MDA-MB-231, a human breast cancer cell line. METHODS: Based on previous studies, disintegrin was isolated by FPLC, through two chromatographic steps, both on reversed phase C-18 columns. The isolated disintegrin was structurally characterized by Tris-Tricine-SDS-PAGE, mass spectrometry and N-terminal sequencing. For the functional assays, MTT and wound-healing assays were performed in order to investigate cytotoxicity and effect on cell migration in vitro, respectively. RESULTS: Disintegrin presented a molecular mass of 7287.4 Da and its amino acid sequence shared similarity with the disintegrin domain of P-II metalloproteases. Using functional assays, the disintegrin showed low cytotoxicity (15% and 17%, at 3 and 6 µg/mL, respectively) after 24 h of incubation and in the wound-healing assay, the disintegrin (3 µg/mL) was able to significantly inhibit cell migration (24%, p < 0.05), compared to negative control. CONCLUSION: Thus, our results demonstrate that non-RGD disintegrin from C. d. collilineatus induces low cytotoxicity and inhibits migration of human breast cancer cells. Therefore, it may be a very useful molecular tool for understanding ECM-cell interaction cancer-related mechanisms involved in an important integrin family that highlights molecular aspects of tumorigenesis. Also, non-RGD disintegrin has potential to serve as an agent in anticancer therapy or adjuvant component combined with other anticancer drugs.

10.
Protein Pept Lett ; 25(10): 943-952, 2018.
Article in English | MEDLINE | ID: mdl-30289061

ABSTRACT

BACKGROUND: In last decades, snake venoms have aroused great interest of the medicine due to the pathophysiological effects caused by their toxins. These include the phospholipases A2, low molecular weight proteins capable of causing haemorrhagic, myotoxic, inflammatory and neurotoxic effects after an ophidian accident. The present work describes the isolation and biochemical characterization of a new PLA2 isolated from the B. alternatus snake venom, which was named BaltPLA2. METHOD: The rapid and efficient purification of this toxin was performed using only two chromatography steps (anion exchange and hydrophobic chromatography). RESULTS: BaltPLA2 is an acidic protein (pI 4.4) with an apparent molecular mass of 17000 (SDSPAGE) and 14074.74 Da (MALDI TOF/TOF). Analysis of fragments ion by MS / MS showed the following internal amino acid sequence SGVIICGEGTPCEK, which did not exhibit homology with other PLA2 from the same venom. BaltPLA2 is a catalytically active, which displayed an anticoagulant action, inhibition of platelet aggregation induced by epinephrine (~ 80%) and ADP (24%). BaltPLA2 also was able to induce myonecrosis and the release of cytokines (IL-10, IL-12 and TNF- α) in macrophages culture. CONCLUSION: The results presented in this work greatly contribute to a better understanding of the mechanism of enzymatic and pharmacological actions of PLA2s from snake venoms and they may contribute to its application in medical research.


Subject(s)
Bothrops , Phospholipases A2/pharmacology , Platelet Aggregation/drug effects , Snake Venoms/enzymology , Amino Acid Sequence , Animals , Humans , Phospholipases A2/chemistry
11.
Phytomedicine ; 48: 179-186, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30195876

ABSTRACT

BACKGROUND: Cervical cancer, the fourth most common type of cancer among women worldwide, accounts for approximately 12% of all types of malignancies that affect women. Natural products have contributed significantly to the development of modern therapies; approximately 70% of the drugs available for chemotherapy are naturally based products. PURPOSE: The purpose of this study was to examine the biological activities of nitensidine B (NTB), a guanidinic alkaloid isolated from the leaves of Pterogyne nitens Tul. (Fabaceae) in a cervical cancer cell line. METHODS: In vitro experiments were performed using cervical carcinoma cells immortalized by human papillomavirus type 16 (HPV16, SiHa cells), since epidemiological and molecular studies have demonstrated robust associations between the etiologies of cervical cancer and HPV infection. Cytotoxicity as well as the effect of NTB treatment on intracellular signals of apoptosis, fragmentation of internucleosomal DNA via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and levels of apoptosis effectors (Caspase 3/7) were evaluated. In addition, differential proteomic analysis (iTRAQ) and protein validation using western blot were performed. RESULTS: The cytotoxicity of NTB treatment in the SiHa cell line was concentration-dependent, with the minimum inhibitory concentration of 50% of the cells of 40.98 µM. In the TUNEL assay, SiHa cell apoptosis with 3/7 caspase activation was reported at 12 h following treatment. Differential proteomic analysis by iTRAQ demonstrated that proteins of the glycolytic pathway, aldolase A, alpha-enolase, pyruvate kinase, and glyceraldehyde 3-phosphate dehydrogenase were underexpressed. CONCLUSION: These results indicated that NTB could play a role in decreasing glycolysis . Since tumor cells prefer the glycolytic pathway to generate energy, these findings suggest that NTB may be a reliable model for the study of human cervical cancer cell lines immortalized by HPV16, however more experiments can be performed.


Subject(s)
Apoptosis/drug effects , Glycolysis , Guanidines/pharmacology , Human papillomavirus 16 , Uterine Cervical Neoplasms/virology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Fabaceae/chemistry , Female , Humans , Plant Leaves/chemistry , Proteome
12.
Braz J Infect Dis ; 22(3): 208-218, 2018.
Article in English | MEDLINE | ID: mdl-29879424

ABSTRACT

The hemoflagellate protozoan, Trypanosoma cruzi, mainly transmitted by triatomine insects through blood transfusion or from mother-to-child, causes Chagas' disease. This is a serious parasitic disease that occurs in Latin America, with considerable social and economic impact. Nifurtimox and benznidazole, drugs indicated for treating infected persons, are effective in the acute phase, but poorly effective during the chronic phase. Therefore, it is extremely urgent to find innovative chemotherapeutic agents and/or effective vaccines. Since piplartine has several biological activities, including trypanocidal activity, the present study aimed to evaluate it on two T. cruzi strains proteome. Considerable changes in the expression of some important enzymes involved in parasite protection against oxidative stress, such as tryparedoxin peroxidase (TXNPx) and methionine sulfoxide reductase (MSR) was observed in both strains. These findings suggest that blocking the expression of the two enzymes could be potential targets for therapeutic studies.


Subject(s)
Piperidones/pharmacology , Plant Extracts/pharmacology , Proteins/analysis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/drug effects , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Oxidative Stress , Proteomics , Reference Values , Reproducibility of Results , Trypanosoma cruzi/metabolism
13.
Braz. j. infect. dis ; 22(3): 208-218, May-June 2018. tab, graf
Article in English | LILACS | ID: biblio-974208

ABSTRACT

ABSTRACT The hemoflagellate protozoan, Trypanosoma cruzi, mainly transmitted by triatomine insects through blood transfusion or from mother-to-child, causes Chagas' disease. This is a serious parasitic disease that occurs in Latin America, with considerable social and economic impact. Nifurtimox and benznidazole, drugs indicated for treating infected persons, are effective in the acute phase, but poorly effective during the chronic phase. Therefore, it is extremely urgent to find innovative chemotherapeutic agents and/or effective vaccines. Since piplartine has several biological activities, including trypanocidal activity, the present study aimed to evaluate it on two T. cruzi strains proteome. Considerable changes in the expression of some important enzymes involved in parasite protection against oxidative stress, such as tryparedoxin peroxidase (TXNPx) and methionine sulfoxide reductase (MSR) was observed in both strains. These findings suggest that blocking the expression of the two enzymes could be potential targets for therapeutic studies.


Subject(s)
Piperidones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/chemistry , Plant Extracts/pharmacology , Proteins/analysis , Reference Values , Mass Spectrometry , Trypanosoma cruzi/metabolism , Electrophoresis, Gel, Two-Dimensional , Reproducibility of Results , Oxidative Stress , Proteomics
14.
Int J Biol Macromol ; 114: 741-750, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29580998

ABSTRACT

A ß-xylosidase from Colletotrichum graminicola (Bxcg) was purified. The enzyme showed high halotolerance, retaining about 63% of the control activity in the presence of 2.5molL-1 NaCl. The presence of NaCl has not affected the optimum reaction temperature (65°C), but the optimum pH was slightly altered (from 4.5 to 5.0) at high salt concentrations. Bxcg was fully stable at 50°C for 24h and over a wide pH range even in the presence of NaCl. In the absence of salt Bxcg hydrolyzed p-nitrophenyl-ß-d-xylopyranoside with maximum velocity of 348.8±11.5Umg-1 and high catalytic efficiency (1432.7±47.3Lmmol-1s-1). Bxcg revealed to be a bifunctional enzyme with both ß-xylosidase and α-l-arabinofuranosidase activities, and hydrolyzed xylooligosaccharides containing up to six pentose residues. The enzyme showed high synergistic effect (3.1-fold) with an endo-xylanase for the hydrolysis of beechwood xylan, either in the absence or presence of 0.5molL-1 NaCl, and was tolerant to different organic solvents and surfactants. This is the first report of a halotolerant bifunctional ß-xylosidase/α-l-arabinofuranosidase from C. graminicola, and the enzyme showed attractive properties for application in lignocellulose hydrolysis, particularly under high salinity and/or in the presence of residues of pretreatment steps.


Subject(s)
Colletotrichum/enzymology , Fungal Proteins/isolation & purification , Glycoside Hydrolases/isolation & purification , Xylosidases/isolation & purification , Dose-Response Relationship, Drug , Fungal Proteins/chemistry , Fungal Proteins/drug effects , Fungal Proteins/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/drug effects , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Isoelectric Point , Lignin/metabolism , Molecular Weight , Protein Stability , Sodium Chloride/pharmacology , Solvents/pharmacology , Substrate Specificity , Surface-Active Agents/pharmacology , Temperature , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/drug effects , Xylosidases/metabolism
15.
Pediatr Rheumatol Online J ; 16(1): 4, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29316941

ABSTRACT

BACKGROUND: Childhood-onset systemic lupus erythematosus (c-SLE) is a chronic autoimmune disease which increases cardiovascular risk factors (CRF) such as elevated homocysteine, TNF-α, and hs-C reactive protein. METHODS: We evaluated BMI, waist circumference (WC), 24-h recalls, SLEDAI-2 K, SLICC/ACR-DI, serum levels of homocysteine, folate, TNF-α, hs-C reactive protein, lipid profile, proteomic data, and duration of corticosteroid therapy in 19 c-SLE and 38 healthy volunteers. Physiological and anthropometric variables of c-SLE and healthy controls were compared by ANCOVA. k-cluster was used to separate c-SLE into two different groups with the best and the worst metabolic profile according to previous analysis showing some metabolites that were statistically different from controls, such as homocysteine, TNF-α, hs-CRP and folate levels. These two clusters were again compared with the control group regarding nutritional parameters, lipid profile and also proteomic data. RESULTS: Individuals with c-SLE presented higher BMI, WC, homocysteine, triglycerides, TNF-α, hs-CRP and lower folate levels when compared to controls. We found 10 proteins whose relative abundances were statistically different between control group and lupus clusters with the best (LCBMP) and the worst metabolic profile (LCWMP). A significant positive correlation was found between TNF-α and triglycerides and between hs-CRP and duration of corticosteroid therapy. CONCLUSION: Cardiovascular disease (CVD) risk parameters were worse in c-SLE. A less protective CVD proteomic profile was found in LCWMP.


Subject(s)
C-Reactive Protein/metabolism , Cardiovascular Diseases/etiology , Folic Acid/blood , Homocysteine/blood , Lupus Erythematosus, Systemic/blood , Tumor Necrosis Factor-alpha/blood , Adolescent , Anthropometry , Biomarkers/blood , Case-Control Studies , Child , Cross-Sectional Studies , Female , Glucocorticoids/administration & dosage , Humans , Lipids/blood , Lupus Erythematosus, Systemic/complications , Nutritional Status , Proteomics/methods , Risk Factors
16.
Article in English | LILACS, VETINDEX | ID: biblio-976024

ABSTRACT

In recent decades, snake venom disintegrins have received special attention due to their potential use in anticancer therapy. Disintegrins are small and cysteine-rich proteins present in snake venoms and can interact with specific integrins to inhibit their activities in cell-cell and cell-ECM interactions. These molecules, known to inhibit platelet aggregation, are also capable of interacting with certain cancer-related integrins, and may interfere in important processes involved in carcinogenesis. Therefore, disintegrin from Crotalus durissus collilineatus venom was isolated, structurally characterized and evaluated for its toxicity and ability to interfere with cell proliferation and migration in MDA-MB-231, a human breast cancer cell line. Methods: Based on previous studies, disintegrin was isolated by FPLC, through two chromatographic steps, both on reversed phase C-18 columns. The isolated disintegrin was structurally characterized by Tris-TricineSDS-PAGE, mass spectrometry and N-terminal sequencing. For the functional assays, MTT and wound-healing assays were performed in order to investigate cytotoxicity and effect on cell migration in vitro, respectively. Results: Disintegrin presented a molecular mass of 7287.4 Da and its amino acid sequence shared similarity with the disintegrin domain of P-II metalloproteases. Using functional assays, the disintegrin showed low cytotoxicity (15% and 17%, at 3 and 6 µg/mL, respectively) after 24 h of incubation and in the wound-healing assay, the disintegrin (3 µg/mL) was able to significantly inhibit cell migration (24%, p < 0.05), compared to negative control. Conclusion: Thus, our results demonstrate that non-RGD disintegrin from C. d. collilineatus induces low cytotoxicity and inhibits migration of human breast cancer cells. Therefore, it may be a very useful molecular tool for understanding ECM-cell interaction cancer-related mechanisms involved in an important integrin family that highlights molecular aspects of tumorigenesis. Also, non-RGD disintegrin has potential to serve as an agent in anticancer therapy or adjuvant component combined with other anticancer drugs.(AU)


Subject(s)
Snake Venoms , Crotalus , Disintegrins , Breast Neoplasms
17.
Oncotarget ; 8(26): 43114-43129, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28562344

ABSTRACT

Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Repressor Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Gene Knockdown Techniques , Humans , Melanoma/genetics , Melanoma/pathology , Prohibitins , Proteomics , Repressor Proteins/genetics , Tunicamycin/pharmacology
18.
Biochem Biophys Res Commun ; 487(1): 28-33, 2017 May 20.
Article in English | MEDLINE | ID: mdl-28365155

ABSTRACT

Human Leucocyte Antigen-G (HLA-G) is a non classical major histocompatibility complex (MHC) molecule that through RNA splicing can encode seven isoforms which are membrane bound (-G1, -G2, -G3 and -G4) and soluble (-G5, -G6 and -G7). HLA-G is described as important immune suppressor endogenous molecule to favor maternal-fetal tolerance, transplant survival and tumor immune scape. HLA-G shows low protein variability and a unique structural complexity that is related with the expression of different isoforms followed by biochemical processes, such as, proteolytic cleavage, molecular interactions, and protein ubiquitination. Studies with HLA-G have shown difficult to assess the role of the individual isoforms. Thus, the aim of this work was to obtain a HLA-G6 recombinant form. The results indicated the production of high homogeneous preparations of soluble recombinant HLA-G6 (srHLA-G6) with molecular mass 23,603.76 Da, determined by MALD-TOF/TOF. In addition, native and denatured srHLA-G6 were detected by ELISA, using commercial monoclonal antibodies. Finally, we developed a suitable methodology to express srHLA-G6 that could contribute in structural and functional studies involving specific isoforms.


Subject(s)
HLA-G Antigens/chemistry , HLA-G Antigens/immunology , Recombinant Proteins/chemistry , Binding Sites , Humans , Molecular Weight , Protein Binding , Solubility
19.
Prep Biochem Biotechnol ; 47(7): 664-672, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28281888

ABSTRACT

Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.


Subject(s)
Culture Media/metabolism , Fungal Proteins/metabolism , Fusarium/metabolism , Plant Diseases/microbiology , Fusarium/enzymology , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Mycelium/metabolism , Proteomics
20.
Int J Biol Macromol ; 98: 436-446, 2017 May.
Article in English | MEDLINE | ID: mdl-28163123

ABSTRACT

Resistance of snakes and some other animals to snake envenomation has been attributed to soluble factors present in their tissues. Here we report the isolation of a novel metalloprotease inhibitor from Bothrops alternatus snake serum (named BaltMPI) with high purity, using a four-step chromatographic method. BaltMPI has molecular weights of 60.5 and 42.4kDa, as determined by SDS-PAGE and mass spectrometry, respectively, and pI=5.27. The first 60 amino acids from the N-terminal region of BaltMPI, determined by Edman's degradation, showed high homology (97%) with the snake venom metalloprotease inhibitor (SVMPI) BJ46a and other SVMPIs (78-82%). The chromatographic fractions and purified BaltMPI exhibited anti-hemorrhagic activity against Batroxase and BjussuMP-I. BaltMPI was stable over wide ranges of pH (1, 5, 8, and 9) and temperature (-80, -20, 4, 60, and 100°C), and suppressed the fibrinogenolytic, fibrinolytic, and azocaseinolytic activities of Batroxase. BaltMPI specifically inhibited the activity of metalloproteases, without affecting the activity of serine proteases. Together, our results suggest that BaltMPI and other SVMPIs are promising molecules for the treatment of snake envenomation, in particular that caused by Bothrops sp.


Subject(s)
Bothrops/blood , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Amino Acid Sequence , Animals , Caseins/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Hemorrhage/drug therapy , Metalloendopeptidases/metabolism , Mice , Protease Inhibitors/blood , Protease Inhibitors/chemistry , Proteolysis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...