Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Comp Neurol ; 527(3): 614-624, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29574727

ABSTRACT

We studied the tangential distribution of cytochrome oxidase (CytOx)-rich patches (blobs) in the striate cortex (V1) of normally sighted Homo sapiens. We analyzed the spatial density and cross-sectional area of patches in CytOx-reacted tangential sections of flat-mounted preparations of V1 and surrounding areas. CytOx-rich patches were most clearly defined in the supragranular cortical layers of V1, particularly at middle levels of layer III. Variations in patch spatial density were subtle across different visual eccentricity representations. Within the binocular representation of V1, the average patch spatial density decreased slightly with increasing cortical eccentricity, from around 1.0 patch/mm2 in the foveal representation to 0.6 patch/mm2 at the representation of ∼60° eccentricity, but seemed to increase again at the representation of the monocular crescent. Across the entire sample, the cross-sectional area of patches (i.e., patch size) varied from approximately 0.2-0.8 mm2 , with a mean value of 0.32 mm2 . Notably, there was no significant variation in the mean patch size across eccentricity representations. Human patches are on average larger than those reported for nonhuman primate brains, and analysis of species with different brain sizes suggests an approximately linear relationship between V1 area and patch size. The relative constancy of patch metrics across eccentricities is in stark contrast with the exponential variation in V1 cortical magnification, suggesting a nearly invariant modular organization throughout human V1.


Subject(s)
Brain Mapping/methods , Electron Transport Complex IV/analysis , Visual Cortex/chemistry , Visual Cortex/cytology , Adult , Female , Humans , Male , Middle Aged , Species Specificity , Visual Cortex/physiology , Young Adult
2.
J Neurosci ; 33(38): 15120-5, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24048842

ABSTRACT

The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.


Subject(s)
Brain Mapping , Cerebral Cortex/anatomy & histology , Primates/anatomy & histology , Animals , Callithrix , Cebus , Diagnosis, Computer-Assisted , Female , Male , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL