Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33567749

ABSTRACT

This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid-liquid extraction and static headspace) followed by gas chromatography-electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L-1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g-1), antimony (77.7 µg g-1), strontium (12,039 µg g-1) and zinc (103 µg g-1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g-1): the levels found in this paper (ranging between 1 and 5100 µg g-1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area.


Subject(s)
Volatile Organic Compounds , Water Pollutants, Chemical , Environmental Monitoring , Italy , Rivers , Water , Water Pollutants, Chemical/analysis
2.
Environ Sci Process Impacts ; 17(2): 300-15, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25341186

ABSTRACT

A significant portion of the particulate matter is the total carbonaceous fraction (or total carbon, TC), composed of two main fractions, elemental carbon (EC) and organic carbon (OC), which shows a large variety of organic compounds, e.g. aliphatic, aromatic compounds, alcohols, acids, etc. In this paper, TC, EC and OC concentrations determined in a downtown Rome urban area are discussed considering the influence of meteorological conditions on the temporal-spatial aerosol distribution. Similar measurements were performed at ENEA Casaccia, an area outside Rome, which is considered as the ome background. Since 2000, TC, EC and OC measurements have been performed by means of an Ambient Carbon Particulate Monitor equipped with a NDIR detector. The EC and OC concentrations trends are compared with benzene and CO trends, which are specific indicators of autovehicular traffic, for identifying the primary EC and OC contributions and the secondary OC fraction origin. Further, a chemical investigation is reported for investigating how the main organic (i.e., n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons) and inorganic (i.e., metals, ions) fractions vary their levels during the investigated period in relationship to new regulations and/or technological innovations.


Subject(s)
Air Pollutants/analysis , Carbon/analysis , Environmental Monitoring , Rome
3.
Environ Sci Pollut Res Int ; 21(6): 4527-38, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24338000

ABSTRACT

Many studies have focused their attention on the determination of elements of toxicological and environmental interest in atmospheric particulate matter using analytical techniques requiring chemical treatments. The instrumental nuclear activation analysis technique allows achieving high sensitivity, good precision, and excellent limit of detection without pretreatment, also considering the problems related to the radioisotope characteristics (e.g., half-life time, interfering reactions, spectral interferences). In this paper, elements such as Al, As, Br, Cl, Cu, I, La, Mg, Mn, Na, Sb, Si, Ti, and V are studied in atmospheric PM10 sampled in downtown Rome: The relative radionuclides after activation of the sample are characterized by very short (ranging from 2.24 to 37.2 min) and short (ranging from 2.58 h to 2.70 days) half-lives. Furthermore, As, Br, La, Mn, and Sb were also determined for evaluating the aerosol characteristics. The results, elaborated considering the matrix effects and the interfering reaction contribution to the radioisotope formation (e.g., (28)Al generated by both (n,γ) reaction from (27)Al and (n,p) reaction from (28)Si), show interesting values of As (0.3-6.1 ng m(-3)), Cu (22-313 ng m(-3)), Mn (17-125 ng m(-3)), V (7-63 ng m(-3)), higher than those determined in an area not influenced by autovehicular traffic, and significant levels of I (1-11 ng m(-3)) and Ti (25-659 ng m(-3)) in Rome PM10. The other elements show a pattern similar to the very few data present in the literature. It should be underlined the good correlation (r (2)) of Al vs. Mg (0.915) and Al vs. La (0.726), indicating a same sources for these species as well as Br-Sb showing a little lower correlation (0.623). This last hypothesis is confirmed by the study of the enrichment factors: Sb and Br may be attributed to anthropogenic sources; Cu, Cl, and I show a mixed origin (natural and anthropogenic), whereas Al, Si, Ti, Mn, Na, Mg, and As are of crustal origin. For having more information, a statistical approach based on the principal component analysis and the canonical discriminant analysis has been performed: All the samples (except one) are grouped in a cluster, and elements such as As, Br, Cu, I, La, Mn, Sb, Ti, and V are highly correlated, whereas Na and Cl and Mg and Al assemble in two different clusters. Finally, a comparison with other similar studies is reported showing interesting values for Al, As, Mg, Mn, and Ti.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Aerosols/analysis , Particle Size , Principal Component Analysis , Radioisotopes/analysis
4.
Chem Cent J ; 7(1): 173, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24196275

ABSTRACT

BACKGROUND: Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health.The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study.This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. RESULTS: Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. CONCLUSIONS: The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view.

5.
ScientificWorldJournal ; 2013: 458793, 2013.
Article in English | MEDLINE | ID: mdl-23878525

ABSTRACT

Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard.


Subject(s)
Environmental Monitoring/methods , Neutron Activation Analysis/methods , Particulate Matter/analysis , Particulate Matter/chemistry , Italy , Photons
6.
Ecotoxicol Environ Saf ; 92: 206-14, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23498152

ABSTRACT

The possibility to have reference values in clinical chemistry is really important and hair is an ideal tissue for tracing human health conditions. This study performed on 131 hair samples of high school students gives a better knowledge of element levels (i.d., As, Cd, Cr, Cu, Fe, Hg, Mn, S, Sb, Se, Sn and Zn) in subjects not exposed to specific contamination. A nuclear analytical technique, Instrumental Neutron Activation Analysis, has been employed for determining such species. These data can be used as tentative reference values in human hairs. The ratios among metals give important considerations on the general aspect of human health: the reference value represents an evaluation of the essential metabolic functions whereas an imbalance could be a factor influencing the rising of some pathologies, even if it is not an index of particular metabolic deficiency. A comparison with Italian studies shows a good agreement whereas some little discrepancies are evident with International studies. Further, a statistical approach (cluster analysis, Canonical Discriminant Analysis) was applied for determining the reference values. Taking in account these reference values a relationship with the environmental and pollutant compartments was studied confirming the starting hypothesis.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Monitoring/methods , Hair/chemistry , Hazardous Substances/analysis , Neutron Activation Analysis/methods , Adolescent , Female , Humans , Male , Reference Values , Schools , Statistics as Topic , Students
SELECTION OF CITATIONS
SEARCH DETAIL
...