Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37754954

ABSTRACT

To safely select the proper therapy for ventricular fibrillation (VF), it is essential to distinguish it correctly from ventricular tachycardia (VT) and other rhythms. Provided that the required therapy is not the same, an erroneous detection might lead to serious injuries to the patient or even cause ventricular fibrillation (VF). The primary innovation of this study lies in employing a CNN to create new features. These features exhibit the capacity and precision to detect and classify cardiac arrhythmias, including VF and VT. The electrocardiographic (ECG) signals utilized for this assessment were sourced from the established MIT-BIH and AHA databases. The input data to be classified are time-frequency (tf) representation images, specifically, Pseudo Wigner-Ville (PWV). Previous to Pseudo Wigner-Ville (PWV) calculation, preprocessing for denoising, signal alignment, and segmentation is necessary. In order to check the validity of the method independently of the classifier, four different CNNs are used: InceptionV3, MobilNet, VGGNet and AlexNet. The classification results reveal the following values: for VF detection, there is a sensitivity (Sens) of 98.16%, a specificity (Spe) of 99.07%, and an accuracy (Acc) of 98.91%; for ventricular tachycardia (VT), the sensitivity is 90.45%, the specificity is 99.73%, and the accuracy is 99.09%; for normal sinus rhythms, sensitivity stands at 99.34%, specificity is 98.35%, and accuracy is 98.89%; finally, for other rhythms, the sensitivity is 96.98%, the specificity is 99.68%, and the accuracy is 99.11%. Furthermore, distinguishing between shockable (VF/VT) and non-shockable rhythms yielded a sensitivity of 99.23%, a specificity of 99.74%, and an accuracy of 99.61%. The results show that using tf representations as a form of image, combined in this case with a CNN classifier, raises the classification performance above the results in previous works. Considering that these results were achieved without the preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapies, also opening the door to their use in other ECG rhythm detection applications.

2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904927

ABSTRACT

The increasing challenges of agricultural processes and the growing demand for food globally are driving the industrial agriculture sector to adopt the concept of 'smart farming'. Smart farming systems, with their real-time management and high level of automation, can greatly improve productivity, food safety, and efficiency in the agri-food supply chain. This paper presents a customized smart farming system that uses a low-cost, low-power, and wide-range wireless sensor network based on Internet of Things (IoT) and Long Range (LoRa) technologies. In this system, LoRa connectivity is integrated with existing Programmable Logic Controllers (PLCs), which are commonly used in industry and farming to control multiple processes, devices, and machinery through the Simatic IOT2040. The system also includes a newly developed web-based monitoring application hosted on a cloud server, which processes data collected from the farm environment and allows for remote visualization and control of all connected devices. A Telegram bot is included for automated communication with users through this mobile messaging app. The proposed network structure has been tested, and the path loss in the wireless LoRa is evaluated.

3.
J Imaging ; 7(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34564112

ABSTRACT

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contaminated or faulty seal area, only relevant bands are selected using data fusion. These techniques greatly improve the computation time while maintaining a high classification ratio, showing that the fused image contains enough information for checking a food tray sealing state (faulty or normal), avoiding feeding a large image datacube to the DL algorithms. Additionally, the proposed DL algorithms do not require any prior handcraft approach, i.e., no manual tuning of the parameters in the algorithms are required since the training process adjusts the algorithm. The experimental results, validated using an industrial dataset for food trays, along with different deep learning methods, demonstrate the effectiveness of the proposed approach. In the studied dataset, an accuracy of 88.7%, 88.3%, 89.3%, and 90.1% was achieved for Deep Belief Network (DBN), Extreme Learning Machine (ELM), Stacked Auto Encoder (SAE), and Convolutional Neural Network (CNN), respectively.

4.
Entropy (Basel) ; 21(4)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-33267060

ABSTRACT

Deep Brain Stimulation (DBS) of the Subthalamic Nuclei (STN) is the most used surgical treatment to improve motor skills in patients with Parkinson's Disease (PD) who do not adequately respond to pharmacological treatment, or have related side effects. During surgery for the implantation of a DBS system, signals are obtained through microelectrodes recordings (MER) at different depths of the brain. These signals are analyzed by neurophysiologists to detect the entry and exit of the STN region, as well as the optimal depth for electrode implantation. In the present work, a classification model is developed and supervised by the K-nearest neighbour algorithm (KNN), which is automatically trained from the 18 temporal features of MER registers of 14 patients with PD in order to provide a clinical support tool during DBS surgery. We investigate the effect of different standardizations of the generated database, the optimal definition of KNN configuration parameters, and the selection of features that maximize KNN performance. The results indicated that KNN trained with data that was standardized per cerebral hemisphere and per patient presented the best performance, achieving an accuracy of 94.35% (p < 0.001). By using feature selection algorithms, it was possible to achieve 93.5% in accuracy in selecting a subset of six features, improving computation time while processing in real time.

5.
Sensors (Basel) ; 18(12)2018 Nov 24.
Article in English | MEDLINE | ID: mdl-30477237

ABSTRACT

Sensors provide data which need to be processed after acquisition to remove noise and extract relevant information. When the sensor is a network node and acquired data are to be transmitted to other nodes (e.g., through Ethernet), the amount of generated data from multiple nodes can overload the communication channel. The reduction of generated data implies the possibility of lower hardware requirements and less power consumption for the hardware devices. This work proposes a filtering algorithm (LDSI-Less Data Same Information) which reduces the generated data from event-based sensors without loss of relevant information. It is a bioinspired filter, i.e., event data are processed using a structure resembling biological neuronal information processing. The filter is fully configurable, from a "transparent mode" to a very restrictive mode. Based on an analysis of configuration parameters, three main configurations are given: weak, medium and restrictive. Using data from a DVS event camera, results for a similarity detection algorithm show that event data can be reduced up to 30% while maintaining the same similarity index when compared to unfiltered data. Data reduction can reach 85% with a penalty of 15% in similarity index compared to the original data. An object tracking algorithm was also used to compare results of the proposed filter with other existing filter. The LDSI filter provides less error ( 4 . 86 ± 1 . 87 ) when compared to the background activity filter ( 5 . 01 ± 1 . 93 ). The algorithm was tested under a PC using pre-recorded datasets, and its FPGA implementation was also carried out. A Xilinx Virtex6 FPGA received data from a 128 × 128 DVS camera, applied the LDSI algorithm, created a AER dataflow and sent the data to the PC for data analysis and visualization. The FPGA could run at 177 MHz clock speed with a low resource usage (671 LUT and 40 Block RAM for the whole system), showing real time operation capabilities and very low resource usage. The results show that, using an adequate filter parameter tuning, the relevant information from the scene is kept while fewer events are generated (i.e., fewer generated data).

6.
Comput Intell Neurosci ; 2017: 1512504, 2017.
Article in English | MEDLINE | ID: mdl-29434635

ABSTRACT

Deep Brain Stimulation (DBS) is a surgical procedure for the treatment of motor disorders in patients with Parkinson's Disease (PD). DBS involves the application of controlled electrical stimuli to a given brain structure. The implantation of the electrodes for DBS is performed by a minimally invasive stereotactic surgery where neuroimaging and microelectrode recordings (MER) are used to locate the target brain structure. The Subthalamic Nucleus (STN) is often chosen for the implantation of stimulation electrodes in DBS therapy. During the surgery, an intraoperative validation is performed to locate the dorsolateral region of STN. Patients with PD reveal a high power in the ß band (frequencies between 13 Hz and 35 Hz) in MER signal, mainly in the dorsolateral region of STN. In this work, different power spectrum density methods were analyzed with the aim of selecting one that minimizes the calculation time to be used in real time during DBS surgery. In particular, the results of three nonparametric and one parametric methods were compared, each with different sets of parameters. It was concluded that the optimum method to perform the real-time spectral estimation of beta band from MER signal is Welch with Hamming windows of 1.5 seconds and 50% overlap.


Subject(s)
Algorithms , Beta Rhythm/physiology , Neurosurgical Procedures/methods , Parkinson Disease/physiopathology , Parkinson Disease/surgery , Deep Brain Stimulation , Electroencephalography , Female , Fourier Analysis , Humans , Male , Microelectrodes , Perioperative Period , Statistics, Nonparametric , Subthalamic Nucleus/surgery , Time Factors
7.
Sensors (Basel) ; 16(12)2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27983652

ABSTRACT

Material resistance is important since different physicochemical properties can be extracted from it. This work describes a novel resistance measurement method valid for a wide range of resistance values up to 100 GΩ at a low powered, small sized, digitally controlled and wireless communicated device. The analog and digital circuits of the design are described, analysing the main error sources affecting the accuracy. Accuracy and extended uncertainty are obtained for a pattern decade box, showing a maximum of 1 % accuracy for temperatures below 30 ∘ C in the range from 1 MΩ to 100 GΩ. Thermal analysis showed stability up to 50 ∘ C for values below 10 GΩ and systematic deviations for higher values. Power supply V i applied to the measurement probes is also analysed, showing no differences in case of the pattern decade box, except for resistance values above 10 GΩ and temperatures above 35 ∘ C. To evaluate the circuit behaviour under fiber materials, an 11-day drying process in timber from four species (Oregon pine-Pseudotsuga menziesii, cedar-Cedrus atlantica, ash-Fraxinus excelsior, chestnut-Castanea sativa) was monitored. Results show that the circuit, as expected, provides different resistance values (they need individual conversion curves) for different species and the same ambient conditions. Additionally, it was found that, contrary to the decade box analysis, V i affects the resistance value due to material properties. In summary, the proposed circuit is able to accurately measure material resistance that can be further related to material properties.

8.
Comput Methods Programs Biomed ; 111(2): 269-79, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23773559

ABSTRACT

Detection of ventricular fibrillation (VF) at an early stage is being deeply studied in order to lower the risk of sudden death and allows the specialist to have greater reaction time to give the patient a good recovering therapy. Some works are focusing on detecting VF based on numerical analysis of time-frequency distributions, but in general the methods used do not provide insight into the problem. However, this study proposes a new methodology in order to obtain information about this problem. This work uses a supervised self-organising map (SOM) to obtain visually information among four important groups of patients: VF (ventricular fibrillation), VT (ventricular tachycardia), HP (healthy patients) and AHR (other anomalous heart rates and noise). A total number of 27 variables were obtained from continuous surface ECG recordings in standard databases (MIT and AHA), providing information in the time, frequency, and time-frequency domains. self-organising maps (SOMs), trained with 11 of the 27 variables, were used to extract knowledge about the variable values for each group of patients. Results show that the SOM technique allows to determine the profile of each group of patients, assisting in gaining a deeper understanding of this clinical problem. Additionally, information about the most relevant variables is given by the SOM analysis.


Subject(s)
Data Mining/methods , Tachycardia, Ventricular/diagnosis , Ventricular Fibrillation/diagnosis , Algorithms , Databases, Factual , Electrocardiography/methods , Heart Rate , Humans , Neural Networks, Computer , Signal Processing, Computer-Assisted , Software , Tachycardia, Ventricular/physiopathology , Time Factors , Ventricular Fibrillation/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL