Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Transplantation ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722685

ABSTRACT

BACKGROUND: Warm ischemia time (WIT) and ischemia-reperfusion injury are limiting factors for vascularized composite allograft (VCA) transplantation. Subnormothermic machine perfusion (SNMP) has demonstrated the potential to extend WIT in organ transplantation. This study evaluates the effect of SNMP on VCA viability after prolonged WIT. METHODS: Rat hindlimbs underwent WIT for 30, 45, 60, 120, 150, or 210 min, followed by 3-h SNMP. Monitoring of perfusion parameters and outflow determined the maximum WIT compatible with limb viability after SNMP. Thereafter, 2 groups were assessed: a control group with inbred transplantation (Txp) after 120 min of WIT and an experimental group that underwent WIT + SNMP + Txp. Graft appearance, blood gas, cytokine levels, and histology were assessed for 21 d. RESULTS: Based on potassium levels, the limit of WIT compatible with limb viability after SNMP is 120 min. Before this limit, SNMP reduces potassium and lactate levels of WIT grafts to the same level as fresh grafts. In vivo, the control group presented 80% graft necrosis, whereas the experimental group showed no necrosis, had better healing (P = 0.0004), and reduced histological muscle injury (P = 0.012). Results of blood analysis revealed lower lactate, potassium levels, and calcium levels (P = 0.048) in the experimental group. Both groups presented an increase in interleukin (IL)-10 and IL-1b/IL-1F2 with a return to baseline after 7 to 14 d. CONCLUSIONS: Our study establishes the limit of WIT compatible with VCA viability and demonstrates the effectiveness of SNMP in restoring a graft after WIT ex vivo and in vivo, locally and systemically.

2.
Xenotransplantation ; 31(2): e12859, 2024.
Article in English | MEDLINE | ID: mdl-38646924

ABSTRACT

Antibody-mediated rejection (AMR) is a common cause of graft failure after pig-to-nonhuman primate organ transplantation, even when the graft is from a pig with multiple genetic modifications. The specific factors that initiate AMR are often uncertain. We report two cases of pig kidney transplantation into immunosuppressed baboons in which we identify novel factors associated with the initiation of AMR. In the first, membranous nephropathy was the initiating factor that was then associated with the apparent loss of the therapeutic anti-CD154 monoclonal antibody in the urine when severe proteinuria was present. This observation suggests that proteinuria may be associated with the loss of any therapeutic monoclonal antibody, for example, anti-CD154 or eculizumab, in the urine, resulting in xenograft rejection. In the second case, the sequence of events and histopathology tentatively suggested that pyelonephritis may have initiated acute-onset AMR. The association of a urinary infection with graft rejection has been well-documented in ABO-incompatible kidney allotransplantation based on the expression of an antigen on the invading microorganism shared with the kidney graft, generating an immune response to the graft. To our knowledge, these potential initiating factors of AMR in pig xenografts have not been highlighted previously.


Subject(s)
Graft Rejection , Heterografts , Immunosuppressive Agents , Kidney Transplantation , Papio , Transplantation, Heterologous , Animals , Female , Male , Graft Rejection/immunology , Heterografts/immunology , Immunosuppression Therapy/methods , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Swine , Transplantation, Heterologous/methods , Transplantation, Heterologous/adverse effects
5.
Am J Transplant ; 24(5): 716-723, 2024 May.
Article in English | MEDLINE | ID: mdl-38286355

ABSTRACT

As more data become available, the Banff 2007 working classification of skin-containing vascularized composite allograft (VCA) pathology is expected to evolve and develop. This report represents the Banff VCA Working Group's consensus on the first revision of the 2007 scoring system. Prior to the 2022 Banff-CanXadian Society of Transplantation Joint Meeting, 83 clinicians and/or researchers were invited to a virtual meeting to discuss whether the 2007 Banff VCA system called for a revision. Unanimously, it was determined that the vascular changes were to be included in the first revision. Subsequently, 2 international online surveys, each followed by virtual discussions, were launched. The goals were (1) to identify which changes define severe rejection, (2) to grade their importance in the evaluation of severe rejection, and (3) to identify emerging criteria to diagnose rejection. A final hybrid (in-person and virtual) discussion at the Banff/Canadian Society of Transplantation Joint Meeting finalized the terminology, the definition, a scoring system, and a reporting system of the vascular changes. This proposal represents an international consensus on this topic and establishes the first revision of the Banff 2007 working classification of skin-containing vascularized composite allograft pathology.


Subject(s)
Graft Rejection , Vascularized Composite Allotransplantation , Humans , Graft Rejection/diagnosis , Graft Rejection/etiology
6.
Am J Transplant ; 24(3): 350-361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37931753

ABSTRACT

The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.


Subject(s)
Kidney Transplantation , Canada , Graft Rejection/etiology , Graft Rejection/pathology , Kidney/pathology , Allografts
7.
Am J Transplant ; 24(1): 30-36, 2024 01.
Article in English | MEDLINE | ID: mdl-37633449

ABSTRACT

De novo membranous nephropathy (dnMN) is an uncommon immune complex-mediated late complication of human kidney allografts that causes proteinuria. We report here the first case of dnMN in a pig-to-baboon kidney xenograft. The donor was a double knockout (GGTA1 and ß4GalNT1) genetically engineered pig with a knockout of the growth hormone receptor and addition of 6 human transgenes (hCD46, hCD55, hTBM, hEPCR, hHO1, and hCD47). The recipient developed proteinuria at 42 days posttransplant, which progressively rose to the nephrotic-range at 106 days, associated with an increase in serum antidonor IgG. Kidney biopsies showed antibody-mediated rejection (AMR) with C4d and thrombotic microangiopathy that eventually led to graft failure at 120 days. In addition to AMR, the xenograft had diffuse, global granular deposition of C4d and IgG along the glomerular basement membrane on days 111 and 120. Electron microscopy showed extensive amorphous subepithelial electron-dense deposits with intervening spikes along the glomerular basement membrane. These findings, in analogy to human renal allografts, are interpreted as dnMN in the xenograft superimposed on AMR. The target was not identified but is hypothesized to be a pig xenoantigen expressed on podocytes. Whether dnMN will be a significant problem in other longer-term xenokidneys remains to be determined.


Subject(s)
Glomerulonephritis, Membranous , Kidney Diseases , Kidney Transplantation , Humans , Swine , Animals , Glomerulonephritis, Membranous/etiology , Kidney Transplantation/adverse effects , Heterografts , Kidney/pathology , Kidney Diseases/pathology , Proteinuria/etiology , Immunoglobulin G , Graft Rejection/pathology
8.
Kidney Int ; 105(4): 812-823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128610

ABSTRACT

Kidney transplant (KTx) biopsies showing transplant glomerulopathy (TG) (glomerular basement membrane double contours (cg) > 0) and microvascular inflammation (MVI) in the absence of C4d staining and donor-specific antibodies (DSAs) do not fulfill the criteria for chronic active antibody-mediated rejection (CA-AMR) diagnosis and do not fit into any other Banff category. To investigate this, we initiated a multicenter intercontinental study encompassing 36 cases, comparing the immunomic and transcriptomic profiles of 14 KTx biopsies classified as cg+MVI DSA-/C4d- with 22 classified as CA-AMR DSA+/C4d+ through novel transcriptomic analysis using the NanoString Banff-Human Organ Transplant (B-HOT) panel and subsequent orthogonal subset analysis using two innovative 5-marker multiplex immunofluorescent panels. Nineteen genes were differentially expressed between the two study groups. Samples diagnosed with CA-AMR DSA+/C4d+ showed a higher glomerular abundance of natural killer cells and higher transcriptomic cell type scores for macrophages in an environment characterized by increased expression of complement-related genes (i.e., C5AR1) and higher activity of angiogenesis, interstitial fibrosis tubular atrophy, CA-AMR, and DSA-related pathways when compared to samples diagnosed with cg+MVI DSA-/C4d-. Samples diagnosed with cg+MVI DSA-/C4d- displayed a higher glomerular abundance and activity of T cells (CD3+, CD3+CD8+, and CD3+CD8-). Thus, we show that using novel multiomic techniques, KTx biopsies with cg+MVI DSA-/C4d- have a prominent T-cell presence and activity, putting forward the possibility that these represent a more T-cell dominant phenotype.


Subject(s)
Kidney Diseases , Kidney Transplantation , Humans , Multiomics , Isoantibodies , T-Lymphocytes , Kidney Transplantation/adverse effects , Inflammation , Biopsy , Graft Rejection , Peptide Fragments , Complement C4b
9.
Radiology ; 309(1): e230984, 2023 10.
Article in English | MEDLINE | ID: mdl-37874235

ABSTRACT

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Subject(s)
Contrast Media , Organometallic Compounds , Rats , Humans , Animals , Gadolinium/pharmacokinetics , Tissue Distribution , Prospective Studies , Brain , Gadolinium DTPA , Magnetic Resonance Imaging/methods
10.
Nature ; 622(7982): 393-401, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821590

ABSTRACT

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Subject(s)
Graft Rejection , Kidney Transplantation , Macaca fascicularis , Swine , Transplantation, Heterologous , Animals , Humans , Animals, Genetically Modified , Endothelial Cells/immunology , Endothelial Cells/metabolism , Graft Rejection/immunology , Graft Rejection/prevention & control , Kidney Transplantation/methods , Polysaccharides/deficiency , Swine/genetics , Transplantation, Heterologous/methods , Transgenes/genetics
11.
Curr Opin Organ Transplant ; 28(5): 340-344, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37526088

ABSTRACT

PURPOSE OF REVIEW: This review aims to summarize the highlights from recent research that involved pathological and molecular analysis of kidney allografts. RECENT FINDINGS: As the research on antibody-mediated rejection (AMR) continues to evolve, studies are focused on identification through transcript studies of pathogenetic pathways involved in the development of AMR as well as refinement of diagnostic methods either by correlating Banff pathologic lesions with clinical and molecular data or by machine learning. Of note, the past year has generated high impact research that underscore the importance of pathologic and molecular correlations and detection of transcripts or gene sets that would aid prognostication. The studies involving refinement of pathologic criteria also highlight the continuous efforts to achieve diagnostic accuracy and standardization. SUMMARY: Research involving histologic and molecular characteristics that define AMR are central to identification and understanding of pathogenetic pathways and remain critical in the development of diagnostic criteria.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Graft Rejection/pathology , Kidney/pathology , Isoantibodies , Transplantation, Homologous
12.
Xenotransplantation ; 30(4): e12816, 2023.
Article in English | MEDLINE | ID: mdl-37548030

ABSTRACT

Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.


Subject(s)
Antibodies , Graft Rejection , Humans , Animals , Swine , Transplantation, Heterologous , Graft Rejection/prevention & control , Transplantation, Homologous , Complement System Proteins , Anti-Inflammatory Agents
13.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37395276

ABSTRACT

BackgroundAcute tubulointerstitial nephritis (AIN) is one of the few causes of acute kidney injury with diagnosis-specific treatment options. However, due to the need to obtain a kidney biopsy for histological confirmation, AIN diagnosis can be delayed, missed, or incorrectly assumed. Here, we identify and validate urinary CXCL9, an IFN-γ-induced chemokine involved in lymphocyte chemotaxis, as a diagnostic biomarker for AIN.MethodsIn a prospectively enrolled cohort with pathologist-adjudicated histological diagnoses, termed the discovery cohort, we tested the association of 180 immune proteins measured by an aptamer-based assay with AIN and validated the top protein, CXCL9, using sandwich immunoassay. We externally validated these findings in 2 cohorts with biopsy-confirmed diagnoses, termed the validation cohorts, and examined mRNA expression differences in kidney tissue from patients with AIN and individuals in the control group.ResultsIn aptamer-based assay, urinary CXCL9 was 7.6-fold higher in patients with AIN than in individuals in the control group (P = 1.23 × 10-5). Urinary CXCL9 measured by sandwich immunoassay was associated with AIN in the discovery cohort (n = 204; 15% AIN) independently of currently available clinical tests for AIN (adjusted odds ratio for highest versus lowest quartile: 6.0 [1.8-20]). Similar findings were noted in external validation cohorts, where CXCL9 had an AUC of 0.94 (0.86-1.00) for AIN diagnosis. CXCL9 mRNA expression was 3.9-fold higher in kidney tissue from patients with AIN (n = 19) compared with individuals in the control group (n = 52; P = 5.8 × 10-6).ConclusionWe identified CXCL9 as a diagnostic biomarker for AIN using aptamer-based urine proteomics, confirmed this association using sandwich immunoassays in discovery and external validation cohorts, and observed higher expression of this protein in kidney biopsies from patients with AIN.FundingThis study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) awards K23DK117065 (DGM), K08DK113281 (KM), R01DK128087 (DGM), R01DK126815 (DGM and LGC), R01DK126477 (KNC), UH3DK114866 (CRP, DGM, and FPW), R01DK130839 (MES), and P30DK079310 (the Yale O'Brien Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Subject(s)
Nephritis, Interstitial , Humans , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/chemically induced , Nephritis, Interstitial/pathology , Kidney/pathology , Biomarkers , RNA, Messenger , Chemokine CXCL9/genetics , Chemokine CXCL9/adverse effects
15.
Xenotransplantation ; 30(4): e12812, 2023.
Article in English | MEDLINE | ID: mdl-37504492

ABSTRACT

INTRODUCTION: Expression of human complement pathway regulatory proteins (hCPRP's) such as CD46 or CD55 has been associated with improved survival of pig organ xenografts in multiple different models. Here we evaluate the hypothesis that an increased human CD46 gene dose, through homozygosity or additional expression of a second hCPRP, is associated with increased protein expression and with improved protection from injury when GTKO lung xenografts are perfused with human blood. METHODS: Twenty three GTKO lungs heterozygous for human CD46 (GTKO.heteroCD46), 10 lungs homozygous for hCD46 (GTKO.homoCD46), and six GTKO.homoCD46 lungs also heterozygous for hCD55 (GTKO.homoCD46.hCD55) were perfused with human blood for up to 4 h in an ex vivo circuit. RESULTS: Relative to GTKO.heteroCD46 (152 min, range 5-240; 6/23 surviving at 4 h), survival was significantly improved for GTKO.homoCD46 (>240 min, range 45-240, p = .034; 7/10 surviving at 4 h) or GTKO.homoCD46.hCD55 lungs (>240 min, p = .001; 6/6 surviving at 4 h). Homozygosity was associated with increased capillary expression of hCD46 (p < .0001). Increased hCD46 expression was associated with significantly prolonged lung survival (p = .048),) but surprisingly not with reduction in measured complement factor C3a. Hematocrit, monocyte count, and pulmonary vascular resistance were not significantly altered in association with increased hCD46 gene dose or protein expression. CONCLUSION: Genetic engineering approaches designed to augment hCPRP activity - increasing the expression of hCD46 through homozygosity or co-expressing hCD55 with hCD46 - were associated with prolonged GTKO lung xenograft survival. Increased expression of hCD46 was associated with reduced coagulation cascade activation, but did not further reduce complement activation relative to lungs with relatively low CD46 expression. We conclude that coagulation pathway dysregulation contributes to injury in GTKO pig lung xenografts perfused with human blood, and that the survival advantage for lungs with increased hCPRP expression is likely attributable to improved endothelial thromboregulation.


Subject(s)
Lung , Animals , Swine , Humans , Animals, Genetically Modified , Transplantation, Heterologous , Heterografts , Perfusion
16.
Am J Transplant ; 23(12): 1872-1881, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37422112

ABSTRACT

Regulatory T cells (Tregs) can inhibit cellular immunity in diverse experimental models and have entered early phase clinical trials in autoimmunity and transplantation to assess safety and efficacy. As part of the ONE Study consortium, we conducted a phase I-II clinical trial in which purified donor antigen reactive (dar)-Tregs (CD4+CD25+CD127lo) were administered to 3 patients, 7 to 11 days after live donor renal transplant. Recipients received a modified immunosuppression regimen, without induction therapy, consisting of maintenance tacrolimus, mycophenolate mofetil, and steroids. Steroids were weaned off over 14 weeks. No rejection was seen on any protocol biopsy. Therefore, all patients discontinued mycophenolate mofetil 11 to 13 months posttransplant, per protocol. An early for-cause biopsy in 1 patient, 5 days after dar-Treg infusion, revealed absence of rejection and accumulation of Tregs in the kidney allograft. All patients had Treg-containing lymphoid aggregates evident on protocol biopsies performed 8 months posttransplant. The patients are now all >6 years posttransplant on tacrolimus monotherapy with excellent graft function. None experienced rejection episodes. No serious adverse events were attributable to Treg administration. These results support a favorable safety profile of dar-Tregs administered early after renal transplant, suggest early biopsy might be an instructive research endpoint and provide preliminary evidence of potential immunomodulatory activity.


Subject(s)
Immunosuppressive Agents , Tacrolimus , Humans , Immunosuppressive Agents/pharmacology , Tacrolimus/therapeutic use , Mycophenolic Acid/therapeutic use , Living Donors , T-Lymphocytes, Regulatory , Pilot Projects , Kidney , Steroids , Graft Rejection/etiology , Graft Rejection/prevention & control , Graft Rejection/drug therapy
17.
Am J Transplant ; 23(9): 1319-1330, 2023 09.
Article in English | MEDLINE | ID: mdl-37295719

ABSTRACT

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.


Subject(s)
B-Lymphocytes, Regulatory , Mice , Animals , Transcriptome , Mice, Inbred C57BL , Mice, Inbred DBA , Kidney , Allografts , Cell Differentiation , Graft Rejection/etiology , Graft Survival
18.
Lab Invest ; 103(8): 100177, 2023 08.
Article in English | MEDLINE | ID: mdl-37207705

ABSTRACT

Two accepted possible pathways for Merkel cell carcinoma (MCC) pathogenesis include the clonal integration of the Merkel cell polyomavirus (MCPyV) into the neoplastic cells and by UV irradiation. We hypothesize that, in UV etiology, the expression of genes associated with epithelial-mesenchymal transition (EMT) would be higher in MCPyV-negative MCCs. We compared RNA expression in 16 MCPyV-negative with that in 14 MCPyV-positive MCCs in 30 patients using NanoString panel of 760 gene targets as an exploratory method. Subsequently, we confirmed the findings with a publicly available RNA sequencing data set. The NanoString method showed that 29 of 760 genes exhibited significant deregulation. Ten genes (CD44, COL6A3, COL11A1, CXCL8, INHBA, MMP1, NID2, SPP1, THBS1, and THY1) were part of the EMT pathway. The expression of CDH1/E-cadherin, a key EMT gene, and TWIST1, regulator gene of EMT, was higher in MCPyV-negative tumors. To further investigate the expression of EMT genes in MCPyV-negative MCCs, we analyzed publicly available RNA sequencing data of 111 primary MCCs. Differential expression and gene set enrichment analysis of 35 MCPyV-negative versus 76 MCPyV-positive MCCs demonstrated significantly higher expression of EMT-related genes and associated pathways such as Notch signaling, TGF-ß signaling, and Hedgehog signaling, and UV response pathway in MCPyV-negative MCCs. The significance of the EMT pathway in MCPyV-negative MCCs was confirmed independently by a coexpression module analysis. One of the modules (M3) was specifically activated in MCPyV-negative MCCs and showed significant enrichment for genes involved in EMT. A network analysis of module M3 revealed that CDH1/E-cadherin was among the most connected genes (hubs). E-cadherin and LEF1 immunostains demonstrated significantly more frequent expression in MCPvV-negative versus MCPyV-positive tumors (P < .0001). In summary, our study showed that the expression of EMT-associated genes is higher in MCPyV-negative MCC. Because EMT-related proteins can be targeted, the identification of EMT pathways in MCPyV-negative MCCs is of potential therapeutic relevance.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/pathology , Skin Neoplasms/metabolism , Merkel cell polyomavirus/genetics , Tumor Virus Infections/complications , Tumor Virus Infections/genetics , Polyomavirus Infections/complications , Polyomavirus Infections/genetics , Epithelial-Mesenchymal Transition/genetics , Hedgehog Proteins , Cadherins
19.
Am J Transplant ; 23(8): 1171-1181, 2023 08.
Article in English | MEDLINE | ID: mdl-37019335

ABSTRACT

The blockade of the CD154-CD40 pathway with anti-CD154 monoclonal antibody has been a promising immunomodulatory approach to prevent allograft rejection. However, clinical trials of immunoglobulin G1 antibodies targeting this pathway revealed thrombogenic properties, which were subsequently shown to be mediated by crystallizable fragment (Fc)-gamma receptor IIa-dependent platelet activation. To prevent thromboembolic complications, an immunoglobulin G4 anti-CD154 monoclonal antibody, TNX-1500, which retains the fragment antigen binding region of ruplizumab (humanized 5c8, BG9588), was modified by protein engineering to decrease Fc binding to Fc-gamma receptor IIa while retaining certain other effector functions and pharmacokinetics comparable with natural antibodies. Here, we report that TNX-1500 treatment is not associated with platelet activation in vitro and consistently inhibits kidney allograft rejection in vivo without clinical or histologic evidence of prothrombotic phenomena. We conclude that TNX-1500 retains efficacy similar to that of 5c8 to prevent kidney allograft rejection while avoiding previously identified pathway-associated thromboembolic complications.


Subject(s)
Kidney Transplantation , Animals , Kidney Transplantation/adverse effects , CD40 Ligand , Kidney , Antibodies, Monoclonal/therapeutic use , CD40 Antigens , Immunoglobulin G , Primates , Allografts , Graft Survival , Graft Rejection/etiology , Graft Rejection/prevention & control
20.
J Am Soc Nephrol ; 34(7): 1159-1165, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37094382

ABSTRACT

BACKGROUND: In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis. METHODS: Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis. RESULTS: ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1. CONCLUSIONS: Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis.


Subject(s)
Kidney , Nephritis, Hereditary , Mice , Animals , Kidney/diagnostic imaging , Kidney/pathology , Nephritis, Hereditary/pathology , Fibrosis , Magnetic Resonance Imaging/methods , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...