Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 862: 160719, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36481134

ABSTRACT

Succinic acid (SA) has been produced from rice straw (RS) and sugarcane bagasse (SB) as low-cost feedstocks in this study through sequential peracetic acid (PA) and alkaline peroxide (AP) pretreatment assisted by ultrasound and pre-hydrolysis followed by simultaneous saccharification and fermentation (PSSF). The effect of yeast extract (YE) concentration, inoculum concentration, and biomass type on SA production was investigated. The results showed that SA production from RS and SB was significantly affected by the YE concentration. Final concentration and yield of SA produced were significantly increased along with the increasing of YE concentration. Moreover, inoculum concentration significantly affected the SA production from SB. Higher inoculum concentration led to higher SA production. On the other hand, SA production from RS was not significantly affected by the inoculum concentration. Using RS as the feedstock, the highest SA production was achieved on the medium containing 15 g/L YE with 5 % v/v inoculum, obtaining SA concentration and yield of 3.64 ± 0.1 g/L and 0.18 ± 0.05 g/g biomass, respectively. Meanwhile, the highest SA production from SB was acquired on the medium containing 10 g/L YE with 7.5 % v/v inoculum, resulting SA concentration and yield of 5.1 ± 0.1 g/L and 0.25 ± 0.05 g/g biomass, respectively. This study suggested that RS and SB are potential to be used as low-cost feedstocks for sustainable and environmentally friendly SA production through ultrasonic-assisted PA and AP pretreatment and PSSF.


Subject(s)
Oryza , Saccharum , Cellulose/metabolism , Succinic Acid , Oryza/metabolism , Saccharum/metabolism , Fermentation , Peracetic Acid , Hydrolysis
2.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144813

ABSTRACT

This study aims to optimize ultrasonic-assisted natural deep eutectic solvents (NADES) based extraction from C. longa. Choline chloride-lactic acid (CCLA-H2O = 1:1, b/v) was used to investigate the impact of various process parameters such as solvent's water content, solid loading, temperature, and extraction time. The optimal yield of 79.635 mg/g of C. longa was achieved from extraction in 20% water content NADES with a 4% solid loading in 35 °C temperature for 1 h. Peleg's model was used to describe the kinetics of the optimized ultrasonic-assisted extraction (UAE) method, and the results were found to be compatible with experimental data. The optimum conditions obtained from C. longa extraction were then used for the extraction of C. xanthorriza and C. mangga, which give yields of 2.056 and 31.322 mg/g, respectively. Furthermore, n-hexane was utilized as an anti-solvent in the separation process of curcuminoids extract from C. longa, C. xanthorriza, and C. mangga, which gave curcuminoid recovery of 39%, 0.74%, and 27%, respectively. Solidification of curcuminoids was also carried out using the crystallization method with n-hexane and isopropanol. However, the solution of CCLA and curcuminoids formed a homogeneous mixture with isopropanol. Hence, the curcuminoids could not be solidified due to the presence of NADES in the extract solution.


Subject(s)
Curcuma , Curcumin , 2-Propanol , Choline , Curcuma/chemistry , Curcumin/chemistry , Deep Eutectic Solvents , Diarylheptanoids , Hexanes , Lactic Acid , Plant Extracts/chemistry , Solvents/chemistry , Ultrasonics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...