Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Article in English | MEDLINE | ID: mdl-38772424

ABSTRACT

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Subject(s)
Genome, Insect , Isoptera , Selection, Genetic , Animals , Isoptera/genetics , Phylogeny , Evolution, Molecular , Cockroaches/genetics , Social Behavior
2.
Insect Sci ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462506

ABSTRACT

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

3.
Proc Biol Sci ; 283(1825): 20152869, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26888035

ABSTRACT

Parallel evolution is the independent appearance of similar derived phenotypes from similar ancestral forms. It is of key importance in the debate over whether evolution is stochastic and unpredictable, or subject to constraints that limit available phenotypic options. Nevertheless, its occurrence has rarely been demonstrated above the species level. Climate change on the Australian landmass over the last approximately 20 Myr has provided conditions conducive to parallel evolution, as taxa at the edges of shrinking mesic habitats adapted to drier biomes. Here, we investigate the phylogeny and evolution of Australian soil-burrowing and wood-feeding blaberid cockroaches. Soil burrowers (subfamily Geoscapheinae) are found in relatively dry sclerophyllous and scrubland habits, whereas wood feeders (subfamily Panesthiinae) are found in rainforest and wet sclerophyll. We sequenced and analysed mitochondrial and nuclear markers from 142 specimens, and estimated the evolutionary time scale of the two subfamilies. We found evidence for the parallel evolution of soil-burrowing taxa from wood-feeding ancestors on up to nine occasions. These transitions appear to have been driven by periods of aridification during the Miocene and Pliocene across eastern Australia. Our results provide an illuminating example of climate-driven parallel evolution among species.


Subject(s)
Biological Evolution , Climate Change , Cockroaches/genetics , Animals , Australia , DNA, Ribosomal Spacer/genetics , Insect Proteins/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
4.
Proc Biol Sci ; 270(1521): 1301-7, 2003 Jun 22.
Article in English | MEDLINE | ID: mdl-12816644

ABSTRACT

Morphologically similar cockroaches in the subfamilies Panesthiinae and Geoscapheinae (Blattaria: Blaberidae) display contrasting feeding habits, behaviour and biogeographical distributions. Panesthiinae, found throughout Asia and Australia, all live in and feed on decaying wood that they burrow into. Geoscapheinae are restricted to Australia and construct and live in burrows in the soil, where they feed on dry leaves taken from the surface. A lack of knowledge about phylogenetic relationships among these cockroaches hinders an understanding of the factors that have shaped the evolution of their diverse lifestyles and biogeography. To address this issue, we sequenced three genes from representatives of nine of the 10 genera in the two subfamilies, and performed phylogenetic analyses. The well-supported topology revealed the Panesthiinae to be paraphyletic with respect to the Geoscapheinae. Soil-burrowing cockroaches appear to have evolved from a lineage of wood burrowers that invaded Australia from the north some time after the merging of the Asian and Australian tectonic plates ca. 20 Myr ago. The main factor promoting the evolution of soil burrowing is likely to have been one of the periods of strong aridity that Australia has experienced since the Miocene period.


Subject(s)
Biological Evolution , Cockroaches/physiology , Soil/parasitology , Wood , Animals , Asia, Southeastern , Australia , Cockroaches/classification , Cockroaches/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...