Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 53(7): 3620-3633, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30830765

ABSTRACT

Little is known about the regional extent and variability of nitrate from atmospheric deposition that is transported to streams without biological processing in forests. We measured water chemistry and isotopic tracers (δ18O and δ15N) of nitrate sources across the Northern Forest Region of the U.S. and Canada and reanalyzed data from other studies to determine when, where, and how unprocessed atmospheric nitrate was transported in catchments. These inputs were more widespread and numerous than commonly recognized, but with high spatial and temporal variability. Only 6 of 32 streams had high fractions (>20%) of unprocessed atmospheric nitrate during baseflow. Seventeen had high fractions during stormflow or snowmelt, which corresponded to large fractions in near-surface soil waters or groundwaters, but not deep groundwater. The remaining 10 streams occasionally had some (<20%) unprocessed atmospheric nitrate during stormflow or baseflow. Large, sporadic events may continue to be cryptic due to atmospheric deposition variation among storms and a near complete lack of monitoring for these events. A general lack of observance may bias perceptions of occurrence; sustained monitoring of chronic nitrogen pollution effects on forests with nitrate source apportionments may offer insights needed to advance the science as well as assess regulatory and management schemes.


Subject(s)
Forests , Nitrates , Canada , Environmental Monitoring , Nitrogen , Rivers
2.
Environ Sci Technol ; 51(6): 3542-3549, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28235178

ABSTRACT

Emissions of nitrogen oxides (NOx) in the United States (U.S.) from large stationary sources, such as electric generating units, have decreased since 1995, driving decreases in nitrogen deposition. However, increasing NOx emissions from emerging industries, such as unconventional natural gas (UNG) extraction, could offset stationary source emission reductions in shale gas producing regions of the U.S. The Marcellus Shale in the northeastern U.S. has seen dramatic increases in the number of wells and associated natural gas production during the past 10 years. In this study, we examine the potential impacts of shale gas development on regional NOx emission inventories and dry deposition fluxes to Clean Air Status and Trends (CASTNET) sites in Pennsylvania and New York. Our results demonstrate that the current distribution of CASTNET sites is ineffective for monitoring the influence of Marcellus well NOx emissions on regional nitrogen deposition. Despite the fact that existing CASTNET sites are not influenced by UNG extraction activity, NOx emissions densities from shale gas extraction are substantial and are estimated to reach up to 21 kg NOx ha-1 year-1 in some regions. If these emissions deposit locally, UNG extraction activity could contribute to critical nitrogen load exceedances in areas of high well density.


Subject(s)
Air Pollutants , Nitrogen , Environmental Monitoring , Natural Gas , New York , Pennsylvania , United States
SELECTION OF CITATIONS
SEARCH DETAIL