Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081262

ABSTRACT

We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7-4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

2.
Phys Rev Lett ; 131(10): 101002, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739367

ABSTRACT

We report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope. Using this, we repurpose data collected to search for dark matter to set a limit on the axion photon coupling of a CaB originating from dark matter cascade decay via a mediator in the 800-995 MHz frequency range. We find that the present sensitivity is limited by fluctuations in the cavity readout as the instrument scans across dark matter masses. Nevertheless, we suggest that these challenges can be surmounted using superconducting qubits as single photon counters, and allow ADMX to operate as a telescope searching for axions emerging from the decay of dark matter. The daily modulation analysis technique we introduce can be deployed for various broadband rf signals, such as other forms of a CaB or even high-frequency gravitational waves.

3.
Rev Sci Instrum ; 92(12): 124502, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972408

ABSTRACT

Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 µeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.

4.
Phys Rev Lett ; 127(26): 261803, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029490

ABSTRACT

We report the results from a haloscope search for axion dark matter in the 3.3-4.2 µeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible" axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals.

5.
Phys Rev Lett ; 124(10): 101303, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216421

ABSTRACT

This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 µeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.

6.
Phys Rev Lett ; 120(15): 151301, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756850

ABSTRACT

This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 µeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

7.
Phys Rev Lett ; 121(26): 261302, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636160

ABSTRACT

The µeV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX "Sidecar," which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM_{010} and TM_{020} modes.

8.
Phys Rev Lett ; 114(16): 162501, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25955048

ABSTRACT

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

9.
Phys Rev Lett ; 105(5): 051801, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20867906

ABSTRACT

Scalar fields with a "chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling ßγ excluding values between 2×10(9) and 5×10(14) for effective chameleon masses between 1.9510 and 1.9525 µeV.

10.
Phys Rev Lett ; 104(4): 041301, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20366699

ABSTRACT

Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

11.
Phys Rev Lett ; 105(17): 171801, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231034

ABSTRACT

Hidden U(1) gauge symmetries are common to many extensions of the standard model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with standard model photons, providing a means for electromagnetic power to pass through conducting barriers. The axion dark matter experiment detector was used to search for hidden vector bosons originating in an emitter cavity driven with microwave power. We exclude hidden vector bosons with kinetic couplings χ>3.48×10⁻8 for masses less than 3 µeV. This limit represents an improvement of more than 2 orders of magnitude in sensitivity relative to previous cavity experiments.

12.
Phys Rev Lett ; 95(9): 091304, 2005 Aug 26.
Article in English | MEDLINE | ID: mdl-16197206

ABSTRACT

Theoretical arguments predict that the distribution of cold dark matter in spiral galaxies has peaks in velocity space associated with nonthermalized flows of dark matter particles. We searched for the corresponding peaks in the spectrum of microwave photons from axion to photon conversion in a cavity detector for dark matter axions. We found none and place limits on the density of any local flow of axions as a function of the flow velocity dispersion over the axion mass range 1.98 to 2.17 microeV.

13.
J Neurosci Res ; 66(2): 191-202, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11592114

ABSTRACT

Focal injection of the sodium channel blocker tetrodotoxin (TTX) into the injury site at either 5 or 15 min after a standardized thoracic contusion spinal cord injury (SCI) reduces white matter pathology and loss of axons in the first 24 hr after injury. Focal injection of TTX at 15 min after SCI also reduces chronic white matter loss and hindlimb functional deficits. We have now tested the hypothesis that the reduction in chronic deficits with TTX treatment is associated with long-term preservation of axons after SCI and compared both acute (24 hr) and chronic (6 weeks) effects of TTX administered at 15 min prior to and 5 min or 4 hr after SCI. Our results indicate a significant reduction of acute white matter pathology in rats treated with TTX at 15 min before and 5 min after injury but no effect when treatment was delayed until 4 hr after contusion. Compared with injury controls, groups treated with TTX at 5 min and 4 hr after injury did not show a significant deficit reduction, nor was there a significant sparing of white matter at 6 weeks compared with injury controls. In contrast, the group treated with TTX at 15 min before SCI demonstrated significantly reduced hindlimb functional deficits beginning at 1 week after injury and throughout the 6 weeks of the study. This was associated with a significantly higher axon density in the ventromedial white matter at 6 weeks. The results demonstrate that blockade of sodium channels preserves axons from loss after SCI and points to the importance of time of administration of such drugs for therapeutic effectiveness.


Subject(s)
Contusions/drug therapy , Neuroprotective Agents/therapeutic use , Sodium Channels/drug effects , Spinal Cord Injuries/drug therapy , Tetrodotoxin/therapeutic use , Animals , Axons/drug effects , Axons/pathology , Cell Count , Contusions/pathology , Convalescence , Drug Evaluation, Preclinical , Female , Ion Transport/drug effects , Myelin Sheath/pathology , Neuroprotective Agents/pharmacology , Paraplegia/etiology , Paraplegia/prevention & control , Rats , Rats, Sprague-Dawley , Sodium/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Tetrodotoxin/pharmacology , Time Factors , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/prevention & control
14.
Exp Neurol ; 168(2): 273-82, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11259115

ABSTRACT

The secondary loss of neurons and glia over the first 24 h after spinal cord injury (SCI) contributes to the permanent functional deficits that are the unfortunate consequence of SCI. The progression of this acute secondary cell death in specific neuronal and glial populations has not previously been investigated in a quantitative manner. We used a well-characterized model of SCI to analyze the loss of ventral motoneurons (VMN) and ventral funicular astrocytes and oligodendrocytes at 15 min and 4, 8, and 24 h after an incomplete midthoracic contusion injury in the rat. We found that both the length of lesion and the length of spinal cord devoid of VMN increased in a time-dependent manner. The extent of VMN loss at specified distances rostral and caudal to the injury epicenter progressed symmetrically with time. Neuronal loss was accompanied by a loss of glial cells in ventral white matter that was significant at the epicenter by 4 h after injury. Oligodendrocyte loss followed the same temporal pattern as that of VMN while astrocyte loss was delayed. This information on the temporal-spatial pattern of cell loss can be used to investigate mechanisms involved in secondary injury of neurons and glia after SCI.


Subject(s)
Anterior Horn Cells/pathology , Apoptosis , Neuroglia/pathology , Spinal Cord Injuries/pathology , Animals , Cell Death , Female , Necrosis , Rats , Rats, Sprague-Dawley , Time Factors
15.
Exp Neurol ; 168(2): 283-9, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11259116

ABSTRACT

Alterations in the expression of ionotropic glutamate receptors (GluR) contribute to neuronal loss after brain ischemia and epilepsy. In order to determine whether altered expression of GluR subunits might contribute to cell loss after spinal cord injury (SCI), we performed a time course study of subunit mRNA expression using quantitative in situ hybridization. Expression was studied in ventral horn motor neurons (VMN) and glia in adjacent ventral white matter at 15 min and 4, 8, and 24 h after SCI in tissue sections 4 mm rostral and caudal to the injury epicenter. We found that the AMPA subunit GluR2 was significantly down-regulated in VMN at 24 h, but not at the earlier times examined, although half the loss of VMN in these locations occurs by 8 h after injury. No changes in the normal expression of GluR2 or GluR4 were found in white matter where glial loss occurs after SCI. NMDA subunits NR1 and NR2A were significantly and rapidly up-regulated in VMN after SCI, but only caudal to the lesion site, while VMN loss is similar rostral and caudal to the epicenter. Thus, the temporal pattern of AMPA and the spatial pattern of NMDA subunit expression changes were distinct from the pattern of VMN loss after SCI. We conclude that altered GluR subunit expression after SCI is unlikely to be involved in secondary cell loss and instead may be involved with plasticity and reorganization of the injured spinal cord.


Subject(s)
Anterior Horn Cells/metabolism , Neuroglia/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Spinal Cord Injuries/metabolism , Animals , Anterior Horn Cells/pathology , Cell Death/physiology , RNA, Messenger/metabolism , Rats , Spinal Cord Injuries/pathology
16.
J Neuropathol Exp Neurol ; 60(1): 33-48, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11202174

ABSTRACT

An in vitro investigation was undertaken to study the roles of Na+ and Cl- in mammalian spinal cord (SC) neuron deterioration and death after injury involving physical disruption of the plasma membrane. Individual SC neurons in monolayer cultures were subjected to UV laser microbeam transection of a primary dendrite. Neurons lesioned in modified ionic environments (MIEs) where 50%-75% of the NaCl was replaced with sucrose had higher survival (65%-75%) than neurons lesioned in medium with normal (125 mM) NaCl (28%; p < 0.001). Subsequent experiments found a comparable increase in lesioned neuron survival in MIEs in which only Na+ was replaced with specific ionic substitutes; however, replacement of Cl- was not protective. Electron microscope examinations of neurons fixed <16 min after lesioning showed a dramatic decrease in vesiculation of the smooth endoplasmic reticulum and Golgi apparatus in the low NaCl or low Na+ MIEs. It is hypothesized that Na+ entry after membrane disruption may stimulate elevation of [Ca+2]i leading to ultrastructural disruption and death of injured neurons. The results of these studies suggest that a low NaCl MIE may be useful as an irrigant to limit damage spread and cell death within CNS tissues during surgery or after trauma.


Subject(s)
Chlorides/pharmacology , Neurites/physiology , Neurons/drug effects , Neurons/physiology , Sodium/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Denervation , Dose-Response Relationship, Drug , Mice , Neuroglia/drug effects , Neuroglia/physiology , Neurons/ultrastructure , Sodium Chloride/pharmacology , Spinal Cord/cytology , Spinal Cord/embryology
17.
J Neurosci ; 19(14): 6122-33, 1999 Jul 15.
Article in English | MEDLINE | ID: mdl-10407048

ABSTRACT

Focal microinjection of tetrodotoxin (TTX), a potent voltage-gated sodium channel blocker, reduces neurological deficits and tissue loss after spinal cord injury (SCI). Significant sparing of white matter (WM) is seen at 8 weeks after injury and is correlated to a reduction in functional deficits. To determine whether TTX exerts an acute effect on WM pathology, Sprague Dawley rats were subjected to a standardized weight-drop contusion at T8 (10 gm x 2.5 cm). TTX (0. 15 nmol) or vehicle solution was injected into the injury site 5 or 15 min later. At 4 and 24 hr, ventromedial WM from the injury epicenter was compared by light and electron microscopy and immunohistochemistry. By 4 hr after SCI, axonal counts revealed reduced numbers of axons and significant loss of large (>/=5 micrometer)-diameter axons. TTX treatment significantly reduced the loss of large-diameter axons. In addition, TTX significantly attenuated axoplasmic pathology at both 4 and 24 hr after injury. In particular, the development of extensive periaxonal spaces in the large-diameter axons was reduced with TTX treatment. In contrast, there was no significant effect of TTX on the loss of WM glia after SCI. Thus, the long-term effects of TTX in reducing WM loss after spinal cord injury appear to be caused by the reduction of acute axonal pathology. These results support the hypothesis that TTX-sensitive sodium channels at axonal nodes of Ranvier play a significant role in the secondary injury of WM after SCI.


Subject(s)
Axons/pathology , Sodium Channel Blockers , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Tetrodotoxin/toxicity , Animals , Contusions , Female , Glial Fibrillary Acidic Protein/analysis , Injections, Spinal , Microinjections , Myelin Sheath/pathology , Necrosis , Neuroglia/classification , Neuroglia/pathology , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Tetrodotoxin/administration & dosage
18.
J Neurosci ; 19(1): 464-75, 1999 Jan 01.
Article in English | MEDLINE | ID: mdl-9870974

ABSTRACT

Focal microinjection of 2, 3-dihyro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), an antagonist of the AMPA/kainate subclass of glutamate receptors, reduces neurological deficits and tissue loss after spinal cord injury. Dose-dependent sparing of white matter is seen at 1 month after injury that is correlated to the dose-related reduction in chronic functional deficits. To determine whether NBQX exerts an acute effect on white matter pathology, female, adult Spague Dawley rats were subjected to a standardized weight drop contusion at T-8 (10 gm x 2.5 cm) and NBQX (15 nmol) or vehicle (VEH) solution focally injected into the injury site 15 min later. At 4 and 24 hr, tissue from the injury epicenter was processed for light and electron microscopy, and the histopathology of ventromedial white matter was compared. The axonal injury index, a quantitative representation of axoplasmic and myelinic pathologies, was significantly lower in the NBQX group at 4 hr (2.7 +/- 0.24, mean +/- SE) and 24 hr (1.4 +/- 0.19) than in VEH controls (3.8 +/- 0.33 and 2.1 +/- 0.20, respectively). Counts of glial cell nuclei indicated a loss of at least 60% at 4 and 24 hr after injury in the VEH group compared with uninjured controls. NBQX treatment reduced this glial loss by half. Immunohistochemistry revealed that the spared glia were primarily oligodendrocytes. Thus, the chronic effects of NBQX in reducing white matter loss after spinal cord injury appear to be attributable to the reduction of acute pathology and may be mediated through the protection of glia, particularly oligodendrocytes.


Subject(s)
Brain/drug effects , Contusions/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Neuroglia/drug effects , Quinoxalines/pharmacology , Spinal Cord Injuries/drug therapy , Animals , Brain/metabolism , Brain/pathology , Cell Death/drug effects , Contusions/pathology , Female , Hindlimb/innervation , Immunohistochemistry , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology
19.
J Neurotrauma ; 15(7): 555-61, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9674558

ABSTRACT

Dendrites were transected from murine spinal neurons. Unlesioned neurons showed dark nucleolar and patchy cytoplasmic jun immunostaining. By 0.5 and 2 h, most lesioned neurons stained intensely throughout the soma. However, at 24 h only dead neurons displayed intense somal staining, and 100% of the surviving cells stained like unlesioned controls. Correlation of immunostaining patterns with viability, injury, and death suggests jun gene expression may influence the survival of neurons after physical injury.


Subject(s)
Genes, Immediate-Early/physiology , Genes, jun/physiology , Nerve Degeneration/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-jun/biosynthesis , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Biomarkers , Cell Death/physiology , Cell Survival , Cells, Cultured , Disease Models, Animal , Gene Expression , Mice , Microscopy, Phase-Contrast , Nerve Degeneration/pathology , Neurons/pathology , Spinal Cord/embryology , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Time Factors
20.
Proc Natl Acad Sci U S A ; 95(1): 59-66, 1998 Jan 06.
Article in English | MEDLINE | ID: mdl-9419325

ABSTRACT

There is abundant evidence for large amounts of unseen matter in the universe. This dark matter, by its very nature, couples feebly to ordinary matter and is correspondingly difficult to detect. Nonetheless, several experiments are now underway with the sensitivity required to detect directly galactic halo dark matter through their interactions with matter and radiation. These experiments divide into two broad classes: searches for weakly interacting massive particles (WIMPs) and searches for axions. There exists a very strong theoretical bias for supposing that supersymmetry (SUSY) is a correct description of nature. WIMPs are predicted by this SUSY theory and have the required properties to be dark matter. These WIMPs are detected from the byproducts of their occasional recoil against nucleons. There are efforts around the world to detect these rare recoils. The WIMP part of this overview focuses on the cryogenic dark matter search (CDMS) underway in California. Axions, another favored dark matter candidate, are predicted to arise from a minimal extension of the standard model that explains the absence of the expected large CP violating effects in strong interactions. Axions can, in the presence of a large magnetic field, turn into microwave photons. It is the slight excess of photons above noise that signals the axion. Axion searches are underway in California and Japan. The axion part of this overview focuses on the California effort. Brevity does not allow me to discuss other WIMP and axion searches, likewise for accelerator and satellite based searches; I apologize for their omission.

SELECTION OF CITATIONS
SEARCH DETAIL
...