Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 28(10): 1954-1957, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29653894

ABSTRACT

HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination regimen. Herein, we describe the discovery and characterization of silyl proline-containing HCV NS5A inhibitor MK-8325 with good pan-genotype activity and acceptable pharmacokinetic properties.


Subject(s)
Antiviral Agents/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Proline/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dogs , Genotype , Half-Life , Haplorhini , Hepacivirus/drug effects , Hepacivirus/genetics , Hepacivirus/physiology , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Rats , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
2.
Bioorg Med Chem Lett ; 26(20): 5132-5137, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27634194

ABSTRACT

Herein, we describe our research efforts to develop unique cores in molecules which function as HCV nonstructural protein 5A (NS5A) inhibitors. In particular, various fused tetracyclic cores were identified which showed genotype and mutant activities comparable to the indole-based tetracyclic core.


Subject(s)
Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Hepacivirus/drug effects
4.
Bioorg Med Chem Lett ; 26(19): 4851-4856, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27568086

ABSTRACT

As part of an ongoing effort in NS5A inhibition at Merck we now describe our efforts for introducing substitution around the tetracyclic indole core of MK-8742. Fluoro substitution on the core combined with the fluoro substitutions on the proline ring improved the potency against GT1a Y93H significantly. However, no improvement on GT2b potency was achieved. Limiting the fluoro substitution to C-1 of the tetracyclic indole core had a positive impact on the potency against the resistance associated variants, such as GT1a Y93H and GT2b, and the PK profile as well. Compounds, such as 62, with reduced potency shifts between wild type GT1a to GT2b, GT1a Y93H, and GT1a L31V were identified.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Benzofurans/chemistry , Benzofurans/pharmacokinetics , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Indoles/chemistry , Indoles/pharmacokinetics , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 26(15): 3414-20, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27394665

ABSTRACT

Herein we describe our research efforts around the aryl and heteroaryl substitutions at the aminal carbon of the tetracyclic indole-based HCV NS5A inhibitor MK-8742. A series of potent NS5A inhibitors are described, such as compounds 45-47, 54, 56, and 65, which showed improved potency against clinically relevant and resistance associated HCV variants. The improved potency profiles of these compounds demonstrated an SAR that can improve the potency against GT2b, GT1a Y93H, and GT1a L31V altogether, which was unprecedented in our previous efforts in NS5A inhibition.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , Imidazoles/chemical synthesis , Imidazoles/chemistry , Male , Microbial Sensitivity Tests , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 26(15): 3800-5, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27282742

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein we describe our continued research efforts around the alkyl "Z group" modification of the tetracyclic indole-based NS5A inhibitor MK-8742, which led to the discovery of a series of potent NS5A inhibitors. Compounds 10 and 19 are of particular interests since they are as potent as our previous leads and have much improved rat pharmacokinetic profiles.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , Hepatitis C/drug therapy , Imidazoles/chemical synthesis , Imidazoles/chemistry , Male , Microbial Sensitivity Tests , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Virus Replication/drug effects
8.
Bioorg Med Chem Lett ; 26(15): 3793-9, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27282743

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro virologic profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed-dose combination (FDC) regimen for the treatment of HCV infection. Merck's effort in this area identified MK-4882 and MK-8325 as early development leads. Herein, we describe the discovery of potent macrocyclic NS5A inhibitors bearing the MK-8325 or MK-4882 core structure.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Hepatitis C/drug therapy , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
9.
Bioorg Med Chem Lett ; 26(13): 3158-3162, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27180013

ABSTRACT

HCV NS5A inhibitors have demonstrated impressive in vitro potency profiles in HCV replicon assays and robust HCV RNA titer reduction in the clinic making them attractive components for inclusion in an all oral fixed dose combination regimen for the treatment of HCV infection. Herein, we describe research efforts that led to the discovery of a series of fused tricyclic core containing HCV NS5A inhibitors such as 24, 39, 40, 43, and 44 which have pan-genotype activity and are orally bioavailable in the rat.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Hepatitis C/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Genotype , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
10.
Bioorg Med Chem Lett ; 26(5): 1475-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26850003

ABSTRACT

HCV NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays thus making them attractive components for inclusion in an all oral fixed dose combination treatment regimen. Herein we describe the research efforts that led to the discovery of silyl proline containing HCV NS5A inhibitors such as 7e and 8a with pan-genotype activity profile and acceptable pharmacokinetic properties.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Hepacivirus/genetics , Proline/analogs & derivatives , Silanes/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Dose-Response Relationship, Drug , Genotype , Microbial Sensitivity Tests , Molecular Structure , Silanes/pharmacology , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
11.
ACS Med Chem Lett ; 5(3): 244-8, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24900812

ABSTRACT

Starting from indole-based hepatitis C virus (HCV) NS5B polymerase inhibitor lead compound 1, structure modifications were performed at multiple indole substituents to improve potency and pharmacokinetic (PK) properties. Bicyclic quinazolinone was found to be the best substituent at indole nitrogen, while 4,5-furanylindole was identified as the best core. Compound 11 demonstrated excellent potency. Its C2 N,N-dimethylaminoethyl ester prodrug 12 (SCH 900188) demonstrated significant improvement in PK and was selected as the development candidate.

12.
Bioorg Med Chem Lett ; 24(4): 1085-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24486132

ABSTRACT

The structure-human CXCR3 binding affinity relationship of a series of pyridyl/pyrazinyl-piperazinyl-piperidine derivatives were explored with a focus to improve PK, hERG and metabolic profiles. Several small heterocycles were identified as amide surrogates, which minimized many potential metabolite issues. During the course of SAR development, we have observed the additive effect of desirable functional groups to improve hERG and PK profiles which lead to the discovery of many clinically developable CXCR3 antagonists with excellent overall profile.


Subject(s)
Amides/pharmacology , Drug Discovery , Ether-A-Go-Go Potassium Channels/metabolism , Heterocyclic Compounds/pharmacology , Receptors, CXCR3/antagonists & inhibitors , Amides/administration & dosage , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/chemistry , Humans , Molecular Structure , Rats , Structure-Activity Relationship
13.
Bioorg Med Chem ; 22(1): 447-58, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24275348

ABSTRACT

HCV infections are the leading causes for hepatocellular carcinoma and liver transplantation in the United States. Recent advances in drug discovery have identified direct acting antivirals which have significantly improved cure rates in patients. Current efforts are directed towards identification of novel direct acting antiviral targeting different mechanism of actions which could become part of all oral therapies. We recently disclosed the identification of a novel tricyclic indole derived inhibitors of HCV NS5B polymerase that bound to the enzyme close to the active site. In this manuscript we describe further optimization of potency and pharmacokinetics (PK) of these inhibitors to identify compounds in low nM potency against gt-1b. These analogs also demonstrate excellent PK in rats and monkeys when administered as a dimethyl ethyl amino ester prodrug.


Subject(s)
Esters/pharmacokinetics , Hepacivirus/drug effects , Indoles/pharmacokinetics , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Drug Discovery , Esters/chemistry , Haplorhini , Hepacivirus/enzymology , Humans , Indoles/chemistry , Prodrugs/pharmacology , Rats , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 23(24): 6585-7, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24252545

ABSTRACT

The discovery of lead compound 2e was described. Its covalent binding to HCV NS5B polymerase enzyme was investigated by X-ray analysis. The results of distribution, metabolism and pharmacokinetics were reported. Compound 2e was demonstrated to be potent (replicon GT-1b EC50 = 0.003 µM), highly selective, and safe in in vitro and in vivo assays.


Subject(s)
Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Indoles/chemistry , Quinolines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Haplorhini , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Tertiary , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Viral Nonstructural Proteins/metabolism
15.
Bioorg Med Chem Lett ; 23(21): 6001-3, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24050887

ABSTRACT

A novel series of benzimidazolone-containing histamine H3-receptor antagonists were prepared and their structure-activity relationship was explored. These benzimidazolone analogs demonstrate potent H3-receptor binding affinities, no P450 enzyme inhibition, and strong H3 functional activity. Compound 1o exhibits the best overall profile with H3Ki=0.95nM and rat AUC=12.9µMh.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Guinea Pigs , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Humans , Rats , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
16.
Bioorg Med Chem ; 21(7): 2007-17, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23434368

ABSTRACT

The characterization of HCV genome has identified various vital functional proteins involved in the life cycle of hepatitis C virus. This has resulted in many novel enzymatic targets that are potential for development of therapeutic agents. The HCV RNA dependent RNA polymerase (HCV NS5B) is one such essential enzyme for HCV replication that has been well characterized and studied by various groups to develop novel therapies for hepatitis C. In this paper, we describe our efforts towards the identification and structure-activity relationship (SAR) of novel tricyclic indole derivatives that bind close to the palm site of the NS5B polymerase. X-ray crystal structure of an inhibitor bound to the polymerase is also described.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/enzymology , Indoles/chemistry , Indoles/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Hepacivirus/chemistry , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Molecular Docking Simulation , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship
17.
BMC Immunol ; 13: 2, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22233170

ABSTRACT

BACKGROUND: The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. RESULTS: In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. CONCLUSIONS: SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to prevent transplant rejection.


Subject(s)
Autoimmune Diseases/drug therapy , Chemotaxis, Leukocyte/drug effects , Graft Rejection/prevention & control , Graft Survival/drug effects , Heart Transplantation , Piperazines/pharmacology , Pyrazinamide/analogs & derivatives , Receptors, CXCR3/antagonists & inhibitors , T-Lymphocytes/drug effects , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Autoimmune Diseases/immunology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Graft Rejection/immunology , Humans , In Vitro Techniques , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Protein Binding , Pyrazinamide/pharmacology , Radioligand Assay , Rats , T-Lymphocytes/immunology
18.
Org Lett ; 14(2): 556-9, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22220815

ABSTRACT

The synthesis of substituted 3,4-dihydrofuranoindoles is reported. These new indole compounds were used to synthesize potent HCV NS5B inhibitors. The binding mode of the dihydrofuranoindole-derived inhibitors was established via X-ray crystallographic studies.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Hepacivirus/drug effects , Indoles/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Indoles/pharmacology , Models, Molecular , Protein Interaction Domains and Motifs
19.
J Med Chem ; 55(5): 2089-101, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22247956

ABSTRACT

Starting from indole-based C-3 pyridone HCV NS5B polymerase inhibitor 2, structure-activity relationship (SAR) investigations of the indole N-1 benzyl moiety were performed. This study led to the discovery of irreversible inhibitors with p-fluoro-sulfone- or p-fluoro-nitro-substituted N-1 benzyl groups which achieved breakthrough replicon assay potency (EC(50) = 1 nM). The formation of a covalent bond with adjacent cysteine-366 thiol was was proved by mass spectroscopy and X-ray crystal structure studies. The C-5 ethyl C-2 carboxylic acid derivative 47 had an excellent oral area-under-the-curve (AUC) of 18 µM·h (10 mg/kg). Its oral exposure in monkeys and dogs was also very good. The NMR ALARM assay, mass spectroscopy experiments, in vitro counter screening, and toxicology assays demonstrated that the covalent bond formation between compound 47 and the protein was highly selective and specific. The overall excellent profile of 47 made it an interesting candidate for further investigation.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Indoles/chemical synthesis , Nitro Compounds/chemical synthesis , Sulfones/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Crystallography, X-Ray , Dogs , Haplorhini , Hepacivirus/enzymology , Indoles/pharmacokinetics , Indoles/pharmacology , Models, Molecular , Molecular Structure , Mutagenicity Tests , Nitro Compounds/pharmacokinetics , Nitro Compounds/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rats , Structure-Activity Relationship , Sulfones/pharmacokinetics , Sulfones/pharmacology
20.
J Med Chem ; 55(2): 754-65, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22148957

ABSTRACT

Starting with the indole-based C-3 pyridone lead HCV polymerase inhibitor 2, extensive SAR studies were performed at different positions of the indole core. The best C-5 groups were found to be compact and nonpolar moieties and that the C-6 attachments were not affecting potency. Limited N-1 benzyl-type substituent studies indicated that the best substitutions were fluoro or methyl groups at 2' or 5' positions of the benzyl group. To improve pharmacokinetic (PK) properties, acylsulfonamides were incorporated as acid isosteres at the C-2 position. Further optimization of the combination at N-1, C-2, C-5, and C-6 resulted in the identification of compound 56, which had an excellent potency in both NS5B enzyme (IC(50) = 0.008 µM) and cell-based replicon (EC(50) = 0.02 µM) assays and a good oral PK profile with area-under-the curve (AUC) of 14 and 8 µM·h in rats and dogs, respectively. X-ray structure of inhibitor 56 bound to the enzyme was also reported.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/enzymology , Indoles/chemical synthesis , Sulfonamides/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Dogs , Hepacivirus/drug effects , Hepacivirus/genetics , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Models, Molecular , Molecular Structure , Permeability , Rats , Replicon , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL