Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 9(3): 1083-1094, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30805142

ABSTRACT

Within isolated and fragmented populations, species interactions such as predation can cause shifts in community structure and demographics in tidal marsh ecosystems. It is critical to incorporate species interactions into our understanding when evaluating the effects of sea-level rise and storm surges on tidal marshes. In this study, we hypothesize that avian predators will increase their presence and hunting activities during high tides when increased inundation makes their prey more vulnerable. We present evidence that there is a relationship between tidal inundation depth and time of day on the presence, abundance, and behavior of avian predators. We introduce predation pressure as a combined probability of predator presence related to water level. Focal surveys were conducted at four tidal marshes in the San Francisco Bay, California where tidal inundation patterns were monitored across 6 months of the winter. Sixteen avian predator species were observed. During high tide at Tolay Slough marsh, ardeids had a 29-fold increase in capture attempts and 4 times greater apparent success rate compared with low tide. Significantly fewer raptors and ardeids were found on low tides than on high tides across all sites. There were more raptors in December and January and more ardeids in January than in other months. Ardeids were more prevalent in the morning, while raptors did not exhibit a significant response to time of day. Modeling results showed that raptors had a unimodal response to water level with a peak at 0.5 m over the marsh platform, while ardeids had an increasing response with water level. We found that predation pressure is related to flooding of the marsh surface, and short-term increases in sea levels from high astronomical tides, sea-level rise, and storm surges increase vulnerability of tidal marsh wildlife.

2.
Ecol Evol ; 8(16): 8115-8125, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250688

ABSTRACT

Sea-level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high-elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation-suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we used a site-specific, one-dimensional elevation model (wetland accretion rate model of ecosystem resilience). We then applied our elevation-suitability model to the projected digital elevation models. The resulting maps suggest that suitable breeding and foraging habitat could decline as increased inundation converts middle- and high-elevation suitable habitat to mudflat and subtidal zones. As a result, the highest SLR scenario predicted that no suitable breeding or foraging habitat would remain at any site by 2100 and 2110. Removing development constraints to facilitate landward migration of high salt marsh, or redistributing dredge spoils to replace submerged habitat, might create future high salt marsh habitat, thereby reducing extirpation risk for BSSP in southern California.

SELECTION OF CITATIONS
SEARCH DETAIL