Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853519

ABSTRACT

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Subject(s)
Gait , Horses/genetics , Quantitative Trait Loci , Animals , Gait/genetics , Genome-Wide Association Study , Phenotype
2.
Genet Sel Evol ; 51(1): 22, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31132983

ABSTRACT

BACKGROUND: Since the 1950s, the Norwegian-Swedish Coldblooded trotter (NSCT) has been intensively selected for harness racing performance. As a result, the racing performance of the NSCT has improved remarkably; however, this improved racing performance has also been accompanied by a gradual increase in inbreeding level. Inbreeding in NSCT has historically been monitored by using traditional methods that are based on pedigree analysis, but with recent advancements in genomics, the NSCT industry has shown interest in adopting molecular approaches for the selection and maintenance of this breed. Consequently, the aims of the current study were to estimate genomic-based inbreeding coefficients, i.e. the proportion of runs of homozygosity (ROH), for a sample of NSCT individuals using high-density genotyping array data, and subsequently to compare the resulting rate of genomic-based F (FROH) to that of pedigree-based F (FPED) coefficients within the breed. RESULTS: A total of 566 raced NSCT were available for analyses. Average FROH ranged from 1.78 to 13.95%. Correlations between FROH and FPED were significant (P < 0.001) and ranged from 0.27 to 0.56, with FPED and FROH from 2000 to 2009 increasing by 1.48 and 3.15%, respectively. Comparisons of ROH between individuals yielded 1403 regions that were present in at least 95% of the sampled horses. The average percentage of a single chromosome covered in ROH ranged from 9.84 to 18.82% with chromosome 31 and 18 showing, respectively, the largest and smallest amount of homozygosity. CONCLUSIONS: Genomic inbreeding coefficients were higher than pedigree inbreeding coefficients with both methods showing a gradual increase in inbreeding level in the NSCT breed between 2000 and 2009. Opportunities exist for the NSCT industry to develop programs that provide breeders with easily interpretable feedback on regions of the genome that are suboptimal from the perspective of genetic merit or that are sensitive to inbreeding within the population. The use of molecular data to identify genomic regions that may contribute to inbreeding depression in the NSCT will likely prove to be a valuable tool for the preservation of its genetic diversity in the long term.


Subject(s)
Homozygote , Horses/genetics , Inbreeding , Quantitative Trait Loci , Animals , Female , Genome-Wide Association Study/methods , Horses/physiology , Male , Pedigree , Selective Breeding
3.
BMC Genomics ; 20(1): 104, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717660

ABSTRACT

BACKGROUND: Horses have been strongly selected for speed, strength, and endurance-exercise traits since the onset of domestication. As a result, highly specialized horse breeds have developed with many modern horse breeds often representing closed populations with high phenotypic and genetic uniformity. However, a great deal of variation still exists between breeds, making the horse particularly well suited for genetic studies of athleticism. To identify genomic regions associated with athleticism as it pertains to trotting racing ability in the horse, the current study applies a pooled sequence analysis approach using a unique Nordic horse model. RESULTS: Pooled sequence data from three Nordic horse populations were used for FST analysis. After strict filtering, FST analysis yielded 580 differentiated regions for trotting racing ability. Candidate regions on equine chromosomes 7 and 11 contained the largest number of SNPs (n = 214 and 147, respectively). GO analyses identified multiple genes related to intelligence, energy metabolism, and skeletal development as potential candidate genes. However, only one candidate region for trotting racing ability overlapped a known racing ability QTL. CONCLUSIONS: Not unexpected for genomic investigations of complex traits, the current study identified hundreds of candidate regions contributing to trotting racing ability in the horse. Likely resulting from the cumulative effects of many variants across the genome, racing ability continues to demonstrate its polygenic nature with candidate regions implicating genes influencing both musculature and neurological development.


Subject(s)
Horses/genetics , Phenotype , Polymorphism, Single Nucleotide , Running , Animals , Breeding , Energy Metabolism , Female , Genome , Genome-Wide Association Study , Horses/physiology , Intelligence , Male , Models, Animal , Muscle Development , Sequence Analysis, DNA
4.
BMC Genet ; 19(1): 80, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30157760

ABSTRACT

BACKGROUND: Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. RESULTS: Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. CONCLUSIONS: Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted.


Subject(s)
Energy Metabolism/genetics , Horses/genetics , Learning , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Animals , Female , Genome-Wide Association Study , Horses/metabolism , Horses/physiology , Horses/psychology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...