Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016664

ABSTRACT

BACKGROUND: Owing to its systemic mode-of-action and ease of application, lithium chloride (LiCl) is an ideal varroacide for the control of Varroa destructor infestations in honey bee colonies. To better understand how LiCl functions within a colony, we screened different parts of honey bee anatomy for lithium accumulation. We wanted to elucidate the time-dependent effects of LiCl on V. destructor and its metabolism within honey bees when they were fed continuous LiCl treatments, as well as evaluate potential adverse effects such as accumulation in the hypopharyngeal glands of nurse bees, which could negatively impact queens and larvae. RESULTS: Cage experiments reveal rapid acaricidal onset, with >95% mite mortality within 48 h of treatment. Bee hemolymph analysis supports these observations, showing a rapid increase in lithium concentration within 12 h of treatment, followed by stabilization at a constant level. Lithium accumulates in the rectum of caged bees (≤475.5 mg kg-1 after 7 days of feeding 50 mm LiCl), reflecting the bees' metabolic and excretion process. Despite concerns about potential accumulation in hypopharyngeal glands, low lithium levels of only 0.52 mg kg-1 suggest minimal risk to the queen and 1st- and 2nd-instar larvae. Cessation of LiCl treatment results in a rapid decline in mite mortality in the first 5 days, which increases again thereafter, resulting in mite mortality of 77-90% after 10 days. CONCLUSION: These findings help optimize LiCl application in colonies to achieve high Varroa mortality without unwanted adverse effects and provide important baseline data for future registration. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Ecol Evol ; 14(6): e11595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919649

ABSTRACT

A sustainable solution to the global threat of the Varroa destructor mite is the selection of varroa-resistant honey bee (Apis mellifera) colonies. Both "mite non-reproduction" (MNR) and "varroa sensitive hygiene" (VSH) appear to be promising selection traits for achieving the goal of a resistant honey bee. MNR describes colonies that have a high number of non-reproductive mites (no offspring, no males, or delayed development of mite offspring). High numbers of non-reproductive mites have been observed in selected colonies, but the mechanism behind this trait has not yet been identified. The specialized hygienic behavior of selected honey bees, called VSH, is the removal of varroa-infested brood. These traits were thought to be linked by VSH bees preferentially removing reproductive varroa females leaving only non-reproductive mites behind in cells and thus creating colonies with high levels of MNR. To further investigate this link, we used an experimental setup and data sets from a four-year selection project designed to breed for MNR and VSH colonies. In addition, we sought to answer the question of whether non-reproductive mites are a direct consequence of worker removal behavior. To test this, we artificially induced removal behavior, and after providing the mite with enough time to re-enter another cell, we opened all capped cells, relocated the mites, and evaluated their reproduction. As shown in previous studies and in this study, VSH had no effect on MNR levels. Also, the induced removal behavior did not lead to non-reproduction in the subsequent reproductive cycle post interruption. We thus concluded that breeding for non-reproductive mites does not automatically breed for VSH behavior and worker removal behavior does not cause subsequent reproductive failure of the mites forced to flee and find a new cell for reproduction.

3.
Parasitol Res ; 123(1): 67, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133834

ABSTRACT

The efficacy of various lithium chloride (LiCl) applications in eradicating the parasitic mite Varroa destructor in honey bee colonies was investigated, with a specific focus on its impact on brood development. In broodless colonies (3 weeks post queen caging), the highest efficacy of 98% was achieved with a 9-day treatment of 2.5 kg of candy spiked with 50 mM LiCl. A shorter 5-day treatment with 2 kg of 50 mM LiCl candy resulted in an efficacy of 78%. In colonies with brood, a repeated short-term application of 4 × 0.5 kg 50 mM LiCl candy yielded an efficacy of 88%. LiCl treatment led to a removal of the first batch of brood reared after release of the queen. However, no long-term effects on colony growth were observed, and the colonies successfully overwintered. Additionally, the study demonstrated that lithium is rapidly distributed among the bees of a colony within 2 days, yet only low concentrations were detected in stored food samples. This suggests that the bees efficiently absorb and distribute lithium within the colony. The harvested honey in the following spring revealed a lithium concentration of 0.1-0.2 mg/kg, which is below naturally occurring lithium levels in honey. Based on these findings, LiCl can be considered an effective and easy-to-apply acaricide in broodless colonies, and even in colonies with brood, it had good efficacy and no long-term effects on colony survival. Further research may be necessary to determine the optimal treatment period for achieving an efficacy over 95%.


Subject(s)
Honey , Varroidae , Bees , Animals , Lithium Chloride , Lithium , Honey/analysis , Seasons
4.
Sci Rep ; 13(1): 10340, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365202

ABSTRACT

Varroa destructor is one of the main causes of colony losses of the western honey bee (Apis mellifera). Many efforts exist to breed honey bees resistant to V. destructor. Varroa sensitive hygiene (VSH) is a commonly selected behavioural trait; VSH workers remove the pupae of mite infested brood cells with high efficiency, interrupting the reproduction of the mite. The cues and triggers for this behaviour are not yet fully understood. To determine what elicits this removal behaviour, we examined preselected VSH workers´ responses to four different groups of objects inserted into freshly capped cells: live mites, dead mites, odour reduced mites, and glass beads. These were also compared to control cells that were opened and closed without inserting any object. The pupae in cells containing inorganic objects (glass beads) were removed at similar rates to the control, demonstrating that an object alone does not trigger a removal response. Dead and odour reduced mites were removed at a higher frequency than control cells, but less frequently than live mites. Workers sometimes removed items resting near the top of the cell without removing the pupa. Our results demonstrate that although mite odour from dead mites triggers removal behaviour, the pupa of cells containing live mites were removed more frequently, suggesting that other cues (i.e. odour from feeding wound) or signals (i.e. pupal movement to signal distress) are important. Future research should focus on elucidating these other cues or signals from the brood and mites, as mite presence alone seems to be insufficient.


Subject(s)
Varroidae , Animals , Bees , Varroidae/physiology , Behavior, Animal/physiology , Reproduction , Odorants , Hygiene , Pupa
5.
Sci Total Environ ; 896: 165211, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37391156

ABSTRACT

Urbanization and the increasing use of wireless technologies lead to higher emission rates of radiofrequency electromagnetic fields (RF-EMF) in populated areas. This anthropogenic electromagnetic radiation is a form of environmental pollution and a potential stressor on bees or other flying insects. Cities often have a high density of wireless devices operating on microwave frequencies, which generate electromagnetic frequencies e.g. in the 2.4 and 5.8 GHz bands commonly used by the wireless technologies. To date the effects of nonionizing electromagnetic radiation on the vitality and behavior of insects are poorly understood. In our experiment we used honey bees as model organisms and analyzed the effects of defined exposures to 2.4 and 5.8 GHz on brood development, longevity and homing ability under field conditions. To generate this radiation, we used a high-quality radiation source which generates a consistent, definable and realistic electromagnetic radiation, engineered for this experiment by the Communications Engineering Lab (CEL) at the Karlsruhe Institute of Technology. Our results show significant effects of long-term exposures on the homing ability of foraging honey bees, but no effects on brood development and adult worker longevity. Using this novel and high-quality technical set-up, this interdisciplinary work provides new data on the effects of these widely used frequencies on important fitness parameters of free-flying honey bees.


Subject(s)
Electromagnetic Fields , Longevity , Bees , Animals , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects , Environmental Pollution , Microwaves/adverse effects
6.
Int J Parasitol ; 53(10): 565-571, 2023 09.
Article in English | MEDLINE | ID: mdl-37164049

ABSTRACT

The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite's reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.


Subject(s)
Varroidae , Bees , Animals , Reproduction , Fertility , Europe , France
7.
Environ Sci Pollut Res Int ; 28(18): 22789-22803, 2021 May.
Article in English | MEDLINE | ID: mdl-33432407

ABSTRACT

Insect-pollinated plants are essential for honey bees to feed their brood. In agricultural landscapes, honey bees and other pollinators are often exposed to pesticides used for cultivation. In order to gain more insight into the fluctuation of pesticide loads, 102 daily pollen samples were collected between April and July 2018 in a fruit-growing area in Southern Germany. Samples were analyzed with respect to more than 260 pesticides using a multi-residue pesticide analysis method. Almost 90% of the analyzed pollen samples featured between one and thirteen different pesticides. In total, 29 pesticides were detected at maximum concentrations of up to 4500 ng/g pollen. Maximum residual concentrations of most pesticides were observed during April and the first half of May, as well as during the second half of June. In most cases, serial data of pesticide residuals were detected for approximately 10 subsequent days with two or three maximum values, which were several folds higher than concentrations on the days before and thereafter. The pollen hazard quotient (PHQ) was calculated to estimate the risk of the detected pesticides to honey bees and wild pollinators.


Subject(s)
Insecticides , Pesticide Residues , Pesticides , Agriculture , Animals , Bees , Germany , Insecticides/analysis , Pesticide Residues/analysis , Pesticides/analysis , Pollen/chemistry
8.
Nat Commun ; 10(1): 692, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741934

ABSTRACT

Interactions between multiple stressors have been implicated in elevated honeybee colony losses. Here, we extend our landscape-scale study on the effects of placement at clothianidin seed-treated oilseed rape fields on honeybees with an additional year and new data on honeybee colony development, swarming, mortality, pathogens and immune gene expression. Clothianidin residues in pollen, nectar and honeybees were consistently higher at clothianidin-treated fields, with large differences between fields and years. We found large variations in colony development and microbial composition and no observable negative impact of placement at clothianidin-treated fields. Clothianidin treatment was associated with an increase in brood, adult bees and Gilliamella apicola (beneficial gut symbiont) and a decrease in Aphid lethal paralysis virus and Black queen cell virus - particularly in the second year. The results suggest that at colony level, honeybees are relatively robust to the effects of clothianidin in real-world agricultural landscapes, with moderate, natural disease pressure.


Subject(s)
Bees/drug effects , Guanidines/pharmacology , Neonicotinoids/pharmacology , Plant Extracts/pharmacology , Seeds/chemistry , Thiazoles/pharmacology , Animals , Bacteria/drug effects , Bacteria/pathogenicity , Bees/growth & development , Bees/immunology , Dicistroviridae/drug effects , Environmental Monitoring , Gammaproteobacteria/drug effects , Gene Expression/drug effects , Honey/analysis , Plant Nectar/chemistry , Plant Oils/pharmacology , Pollen/chemistry , Sweden , Symbiosis , Viruses/drug effects , Viruses/pathogenicity
9.
PLoS One ; 13(7): e0199995, 2018.
Article in English | MEDLINE | ID: mdl-29979756

ABSTRACT

In agricultural landscapes honeybees and other pollinators are exposed to pesticides, often surveyed by residue analysis of bee bread. However, bee bread is a mixture of pollen pellets of different plants collected over a longer time period. Therefore, pesticide content in the hive varies with plant species and time of pollen collection. Hence, the analysis of bee bread is an approximate approach to gain information on detailed pesticide exposure during the agronomic active season. As high-resolution data is missing, we carried out a pesticide residue survey over five years (2012-2016) of daily collected pollen pellets at three agricultural distinct sites in southern Germany. 281 single day pollen samples were selected and subjected to a multi-pesticide residue analysis. Pesticide contaminations of pollen differed between the sites. Intensive pesticide exposure can be seen by high pesticide concentrations as well as a high amount of different pesticides detected. During the five years of observation 73 different pesticides were found, of which 84% are characterized as non-harmful to honeybees. To estimate pesticide risks for honeybees, the pollen hazard quotient (PHQ) was calculated. Even though pesticides were detected in sublethal concentrations, we found substances not supposed to be exposed to honey bees, indicating the necessity for further improvement of seed treatments and increasing awareness of flowering shrubs, field margins and pesticide drift. Additionally, an in-depth analysis of nine pollen samples, divided into sub-fractions dominated by single plant species, revealed even higher concentrations in single crops for some pesticides. We give precise residue data of 1,657 single pesticide detections, which should be used for realistic laboratory and field tests.


Subject(s)
Agriculture , Bees , Environmental Monitoring , Pesticide Residues/analysis , Pollen/chemistry , Animals , Germany , Surveys and Questionnaires
10.
Ecotoxicology ; 27(5): 527-538, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29556938

ABSTRACT

Neonicotinoids alone or in combination with pathogens are considered to be involved in the worldwide weakening of honey bees. We here present a new approach for testing sublethal and/or synergistic effects in free flying colonies. In our experiment individually marked honey bees were kept in free flying mini-hives and chronically exposed to sublethal doses of the neonicotinoid clothianidin. Additional groups of bees were challenged with Nosema infections or with combinations of the pesticide and pathogens. Longevity and flight activity of the differentially treated bees were monitored for a period of 18 days. In contrast to previous laboratory studies, no effect of the neonicotinoid treatment on mortality or flight activity could be observed. Although the lifespan of Nosema infected bees were significantly reduced compared to non-infected bees a combination of pesticide and pathogen did not reveal any synergistic effect. Our results indicate that individual bees are less impaired by neonicotinoids if kept within the social environment of the colony. The effect of such a "social buffering" should be considered in future risk assessments.


Subject(s)
Bees/physiology , Guanidines/adverse effects , Insecticides/adverse effects , Neonicotinoids/adverse effects , Nosema/chemistry , Thiazoles/adverse effects , Animals , Bees/drug effects , Feeding Behavior/drug effects , Longevity/drug effects
11.
J Evol Biol ; 31(6): 801-809, 2018 06.
Article in English | MEDLINE | ID: mdl-29577506

ABSTRACT

The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype.


Subject(s)
Bees/parasitology , Biological Evolution , Epistasis, Genetic/physiology , Haploidy , Varroidae/physiology , Animals , Bees/genetics , DNA/genetics , Host-Parasite Interactions , Male , Quantitative Trait Loci , Varroidae/genetics
12.
Sci Rep ; 8(1): 4201, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29511221

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Exp Appl Acarol ; 74(1): 43-54, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29392466

ABSTRACT

Reproduction in Varroa destructor exclusively takes place within the sealed honey bee brood cell and is, therefore, limited by the duration of the postcapping period. Oogenesis, ontogenetic development and mating must be optimized to ensure the production of as many mated daughter mites as possible. One adult male mite has to mate with up to five sister mites and transfer 30-40 spermatozoa to each female. We analyzed the production and transfer of male spermatozoa during a reproductive cycle by counting all spermatozoa in the genital tracts of the male and daughter mites in 80 worker brood cells at defined times after cell capping. We could show that spermatozoa production in male mites is an ongoing process throughout their adult lifetime starting after the adult molt. The spermatozoa are transferred to the females in an early non-capacitated stage and require further maturation within the female's genital tract. Our study points out that a Varroa male has at any time in the brood cell enough spermatozoa to inseminate all daughter mites but does not waste energy in producing a big surplus. In total one male produced, on average, 125 spermatozoa during a reproductive cycle in worker brood which is sufficient for successful matings with at least three daughter mites. Spermiogenesis in Varroa males represents therefore a further adaptation to the limited time available for reproduction.


Subject(s)
Bees/parasitology , Host-Parasite Interactions , Sexual Behavior, Animal , Spermatozoa/physiology , Varroidae/physiology , Animals , Male , Reproduction , Spermatozoa/growth & development , Varroidae/growth & development
14.
Sci Rep ; 8(1): 683, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330449

ABSTRACT

Honey bees are increasingly important in the pollination of crops and wild plants. Recent reports of the weakening and periodical high losses of managed honey bee colonies have alarmed beekeeper, farmers and scientists. Infestations with the ectoparasitic mite Varroa destructor in combination with its associated viruses have been identified as a crucial driver of these health problems. Although yearly treatments are required to prevent collapses of honey bee colonies, the number of effective acaricides is small and no new active compounds have been registered in the past 25 years. RNAi-based methods were proposed recently as a promising new tool. However, the application of these methods according to published protocols has led to a surprising discovery. Here, we show that the lithium chloride that was used to precipitate RNA and other lithium compounds is highly effective at killing Varroa mites when fed to host bees at low millimolar concentrations. Experiments with caged bees and brood-free artificial swarms consisting of a queen and several thousand bees clearly demonstrate the potential of lithium as miticidal agent with good tolerability in worker bees providing a promising basis for the development of an effective and easy-to-apply control method for mite treatment.


Subject(s)
Bees/parasitology , Lithium Chloride/pharmacology , Varroidae/drug effects , Animals , Female , Lithium Chloride/chemistry , Pilot Projects , RNA/chemistry , RNA/metabolism , RNA Interference , Survival Analysis
15.
Sci Rep ; 7(1): 5242, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701778

ABSTRACT

Bees are considered to be threatened globally, with severe overwinter losses of the most important commercial pollinator, the Western honeybee, a major concern in the Northern Hemisphere. Emerging infectious diseases have risen to prominence due to their temporal correlation with colony losses. Among these is Deformed wing virus (DWV), which has been frequently linked to colony mortality. We now provide evidence of a strong statistical association between overwintering colony decline in the field and the presence of DWV genotype-B (DWV-B), a genetic variant of DWV that has recently been shown to be more virulent than the original DWV genotype-A. We link the prevalence of DWV-B directly to a quantitative measure of overwinter decline (workforce mortality) of honeybee colonies in the field. We demonstrate that increased prevalence of virus infection in individual bees is associated with higher overwinter mortality. We also observed a substantial reduction of infected colonies in the spring, suggesting that virus-infected individuals had died during the winter. Our findings demonstrate that DWV-B, plus possible A/B recombinants exhibiting DWV-B at PCR primer binding sites, may be a major cause of elevated overwinter honeybee loss. Its potential emergence in naïve populations of bees may have far-reaching ecological and economic impacts.


Subject(s)
Bees/virology , Colony Collapse/virology , Genetic Variation , Host-Pathogen Interactions/genetics , RNA Virus Infections/virology , RNA Viruses/genetics , Animals , Genotype , RNA Viruses/pathogenicity , Viral Load , Virulence
16.
Exp Appl Acarol ; 69(4): 371-87, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27209572

ABSTRACT

Mating of Varroa destructor takes place inside the sealed honey bee brood cell. During copulation, male mites transfer the spermatozoa into the genital openings of the females. Before the fertilization of female germ cells, the transferred spermatozoa have to pass through a final maturation process inside the genital tract of the female, the so-called capacitation. We here describe for the first time the morphological changes and chronological sequence of spermatozoa capacitation within female V. destructor. We have defined seven distinct stages of spermatozoa during the process of capacitation and have shown that it takes about 5 days from mating to the occurrence of spermatozoa ready for fertilization. This might explain the results of an additional experiment where we could show that freshly mated daughter mites need a phoretic phase on bees before their first reproduction cycle. The transfer of non-capacitated spermatozoa from male V. destructor and the resulting long capacitation period within the female mites seems to be a consequence of an adaptive pressure for the male mites to inseminate several daughter mites within the short time span inside the sealed honey bee brood cell.


Subject(s)
Sperm Capacitation , Varroidae/physiology , Animals , Bees/parasitology , Female , Male , Reproduction
17.
PLoS One ; 10(10): e0140337, 2015.
Article in English | MEDLINE | ID: mdl-26451849

ABSTRACT

Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting"). Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.


Subject(s)
Bees/parasitology , Bees/virology , Host-Parasite Interactions , Nosema/physiology , Varroidae/physiology , Animals , Behavior, Animal , Male
18.
Naturwissenschaften ; 102(9-10): 49, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286322

ABSTRACT

This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee (Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated (p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil (p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex (p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex (p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues..


Subject(s)
Coleoptera/physiology , Sexual Behavior, Animal/physiology , Age Factors , Animals , Female , Male
19.
Environ Microbiol ; 17(11): 4322-31, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25728008

ABSTRACT

Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.


Subject(s)
Bees/drug effects , Bees/microbiology , Insecticides/pharmacology , Nitriles/pharmacology , Nosema/pathogenicity , Pyrethrins/pharmacology , Pyridines/pharmacology , Thiazines/pharmacology , Animals , Neonicotinoids , Nosema/physiology
20.
J Econ Entomol ; 107(2): 508-15, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24772528

ABSTRACT

The honey bee parasite Varroa destructor Anderson & Trueman can disperse and invade honey bee colonies by attaching to "drifting" and "robbing" honey bees that move into nonnatal colonies. We quantified the weekly invasion rates and the subsequent mite population growth from the end of July to November 2011 in 28 honey bee colonies kept in two apiaries that had high (HBD) and low (LBD) densities of neighboring colonies. At each apiary, half (seven) of the colonies were continuously treated with acaricides to kill all Varroa mites and thereby determine the invasion rates. The other group of colonies was only treated before the beginning of the experiment and then left untreated to record Varroa population growth until a final treatment in November. The numbers of bees and brood cells of all colonies were estimated according to the Liebefeld evaluation method. The invasion rates varied among individual colonies but revealed highly significant differences between the study sites. The average invasion rate per colony over the entire 3.5-mo period ranged from 266 to 1,171 mites at the HBD site compared with only 72 to 248 mites at the LBD apiary. In the untreated colonies, the Varroa population reached an average final infestation in November of 2,082 mites per colony (HBD) and 340 mites per colony (LBD). All colonies survived the winter; however, the higher infested colonies lost about three times more bees compared with the lower infested colonies. Therefore, mite invasion and late-year population growth must be considered more carefully for future treatment concepts in temperate regions.


Subject(s)
Animal Distribution , Beekeeping , Bees/parasitology , Varroidae/physiology , Animals , Germany , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL