Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
2.
J Intern Med ; 290(3): 602-620, 2021 09.
Article in English | MEDLINE | ID: mdl-34213793

ABSTRACT

The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.


Subject(s)
Genomics , Precision Medicine , Delivery of Health Care , Disease , Humans
3.
J Intern Med ; 286(2): 118-136, 2019 08.
Article in English | MEDLINE | ID: mdl-30861222

ABSTRACT

In recent years, detection of cell-free tumour DNA (ctDNA) or liquid biopsy has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma, and numerous studies have reported on the feasibility of ctDNA in advanced cancer. In particular, ctDNA assays can capture a more 'global' portrait of tumour heterogeneity, monitor therapy response, and lead to early detection of resistance mutations. More recently, ctDNA analysis has also been proposed as a promising future tool for detection of early cancer and/or cancer screening. As the average proportion of mutated DNA in plasma is very low (0.4% even in advanced cancer), exceedingly sensitive techniques need to be developed. In addition, as tumours are genetically heterogeneous, any screening test needs to assay multiple genetic targets in order to increase the chances of detection. Further research on the genetic progression from normal to cancer cells and their release of ctDNA is imperative in order to avoid overtreating benign/indolent lesions, causing more harm than good by early diagnosis. More knowledge on the sources and elimination of cell-free DNA will enable better interpretation in older individuals and those with comorbidities. In addition, as white blood cells are the major source of cell-free DNA in plasma, it is important to distinguish acquired mutations in leukocytes (benign clonal haematopoiesis) from an upcoming haematological malignancy or other cancer. In conclusion, although many studies report encouraging results, further technical development and larger studies are warranted before applying ctDNA analysis for early cancer detection in the clinic.


Subject(s)
Circulating Tumor DNA/analysis , Early Detection of Cancer , Liquid Biopsy , Neoplasms/genetics , Biomarkers, Tumor/blood , Disease Progression , Forecasting , Humans
4.
Leukemia ; 32(5): 1070-1080, 2018 05.
Article in English | MEDLINE | ID: mdl-29467486

ABSTRACT

In chronic lymphocytic leukemia (CLL), TP53 gene defects, due to deletion of the 17p13 locus and/or mutation(s) within the TP53 gene, are associated with resistance to chemoimmunotherapy and a particularly dismal clinical outcome. On these grounds, analysis of TP53 aberrations has been incorporated into routine clinical diagnostics to improve patient stratification and optimize therapeutic decisions. The predictive implications of TP53 aberrations have increasing significance in the era of novel targeted therapies, i.e., inhibitors of B-cell receptor (BcR) signaling and anti-apoptotic BCL2 family members, owing to their efficacy in patients with TP53 defects. In this report, the TP53 Network of the European Research Initiative on Chronic Lymphocytic Leukemia (ERIC) presents updated recommendations on the methodological approaches for TP53 mutation analysis. Moreover, it provides guidance to ensure that the analysis is performed in a timely manner for all patients requiring treatment and that the data is interpreted and reported in a consistent, standardized, and accurate way. Since next-generation sequencing technologies are gaining prominence within diagnostic laboratories, this report also offers advice and recommendations for the interpretation of TP53 mutation data generated by this methodology.


Subject(s)
DNA Mutational Analysis/methods , Genes, p53/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Europe , High-Throughput Nucleotide Sequencing/methods , Humans
6.
J Intern Med ; 282(5): 371-394, 2017 11.
Article in English | MEDLINE | ID: mdl-28631441

ABSTRACT

With the introduction of next-generation sequencing, the genetic landscape of the complex group of B-cell lymphoid malignancies has rapidly been unravelled in recent years. This has provided important information about recurrent genetic events and identified key pathways deregulated in each lymphoma subtype. In parallel, there has been intense search and development of novel types of targeted therapy that 'hit' central mechanisms in lymphoma pathobiology, such as BTK, PI3K or BCL2 inhibitors. In this review, we will outline the current view of the genetic landscape of selected entities: follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and marginal zone lymphoma. We will detail recurrent alterations affecting important signalling pathways, that is the B-cell receptor/NF-κB pathway, NOTCH signalling, JAK-STAT signalling, p53/DNA damage response, apoptosis and cell cycle regulation, as well as other perhaps unexpected cellular processes, such as immune regulation, cell migration, epigenetic regulation and RNA processing. Whilst many of these pathways/processes are commonly altered in different lymphoid tumors, albeit at varying frequencies, others are preferentially targeted in selected B-cell malignancies. Some of these genetic lesions are either involved in disease ontogeny or linked to the evolution of each disease and/or specific clinicobiological features, and some of them have been demonstrated to have prognostic and even predictive impact. Future work is especially needed to understand the therapy-resistant disease, particularly in patients treated with targeted therapy, and to identify novel targets and therapeutic strategies in order to realize true precision medicine in this clinically heterogeneous patient group.


Subject(s)
Lymphoma, B-Cell/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, Follicular/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology
8.
Leukemia ; 31(2): 282-291, 2017 02.
Article in English | MEDLINE | ID: mdl-27811850

ABSTRACT

The discovery of almost identical or 'stereotyped' B-cell receptor immunoglobulins (BcR IG) among unrelated patients with chronic lymphocytic leukemia (CLL) cemented the idea of antigen selection in disease ontogeny and evolution. The systematic analysis of the stereotypy phenomenon in CLL revealed that around one-third of CLL patients may be grouped into subsets based on shared sequence motifs within the variable heavy complementarity determining region 3. Stereotyped subsets display a strikingly similar biology of the leukemic clones, referring to many different levels, from the immunogenetic and genetic and extending to the epigenetic and functional levels. Even more importantly, the homogeneity of stereotyped subsets has clinical consequences as patients assigned to the same stereotyped subset generally exhibit an overall similar disease course and outcome. In other words, stereotypy-based patient classification of CLL has already provided a more compartmentalized view of this otherwise heterogeneous disease and can assist in refining prognostication models. While this is relevant only for the one-third of cases expressing stereotyped BcR IG; in principle, however, the findings from further analysis of the stereotyped subsets may also contribute towards improved understanding of the remaining non-stereotyped fraction of CLL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Complementarity Determining Regions/genetics , Gene Expression Regulation, Leukemic , Genetic Heterogeneity , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prognosis , Somatic Hypermutation, Immunoglobulin
9.
Leukemia ; 31(7): 1547-1554, 2017 07.
Article in English | MEDLINE | ID: mdl-27890934

ABSTRACT

Recurrent mutations within EGR2 were recently reported in advanced-stage chronic lymphocytic leukemia (CLL) patients and associated with a worse outcome. To study their prognostic impact, 2403 CLL patients were examined for mutations in the EGR2 hotspot region including a screening (n=1283) and two validation cohorts (UK CLL4 trial patients, n=366; CLL Research Consortium (CRC) patients, n=490). Targeted deep-sequencing of 27 known/postulated CLL driver genes was also performed in 38 EGR2-mutated patients to assess concurrent mutations. EGR2 mutations were detected in 91/2403 (3.8%) investigated cases, and associated with younger age at diagnosis, advanced clinical stage, high CD38 expression and unmutated IGHV genes. EGR2-mutated patients frequently carried ATM lesions (42%), TP53 aberrations (18%) and NOTCH1/FBXW7 mutations (16%). EGR2 mutations independently predicted shorter time-to-first-treatment (TTFT) and overall survival (OS) in the screening cohort; they were confirmed associated with reduced TTFT and OS in the CRC cohort and independently predicted short OS from randomization in the UK CLL4 cohort. A particularly dismal outcome was observed among EGR2-mutated patients who also carried TP53 aberrations. In summary, EGR2 mutations were independently associated with an unfavorable prognosis, comparable to CLL patients carrying TP53 aberrations, suggesting that EGR2-mutated patients represent a new patient subgroup with very poor outcome.


Subject(s)
Early Growth Response Protein 2/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Adult , Aged , Female , Genes, p53 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/classification , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Proportional Hazards Models
10.
Leukemia ; 30(11): 2179-2186, 2016 11.
Article in English | MEDLINE | ID: mdl-27282254

ABSTRACT

Histone methyltransferases (HMTs) are important epigenetic regulators of gene transcription and are disrupted at the genomic level in a spectrum of human tumours including haematological malignancies. Using high-resolution single nucleotide polymorphism (SNP) arrays, we identified recurrent deletions of the SETD2 locus in 3% (8/261) of chronic lymphocytic leukaemia (CLL) patients. Further validation in two independent cohorts showed that SETD2 deletions were associated with loss of TP53, genomic complexity and chromothripsis. With next-generation sequencing we detected mutations of SETD2 in an additional 3.8% of patients (23/602). In most cases, SETD2 deletions or mutations were often observed as a clonal event and always as a mono-allelic lesion, leading to reduced mRNA expression in SETD2-disrupted cases. Patients with SETD2 abnormalities and wild-type TP53 and ATM from five clinical trials employing chemotherapy or chemo-immunotherapy had reduced progression-free and overall survival compared with cases wild type for all three genes. Consistent with its postulated role as a tumour suppressor, our data highlight SETD2 aberration as a recurrent, early loss-of-function event in CLL pathobiology linked to aggressive disease.


Subject(s)
Genomics , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Ataxia Telangiectasia Mutated Proteins/genetics , Disease-Free Survival , Female , Genes, Tumor Suppressor , Histone Methyltransferases , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Prognosis , Survival Rate , Tumor Suppressor Protein p53/genetics
11.
J Intern Med ; 279(4): 347-57, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26709197

ABSTRACT

The remarkable clinical heterogeneity in chronic lymphocytic leukaemia (CLL) has highlighted the need for prognostic and predictive algorithms that can be employed in clinical practice to assist patient management and therapy decisions. Over the last 20 years, this research field has been rewarding and many novel prognostic factors have been identified, especially at the molecular genetic level. Whilst detection of recurrent cytogenetic aberrations and determination of the immunoglobulin heavy variable gene somatic hypermutation status have an established role in outcome prediction, next-generation sequencing has recently revealed novel mutated genes with clinical relevance (e.g. NOTCH1, SF3B1 and BIRC3). Efforts have been made to combine variables into prognostic indices; however, none has been universally adopted. Although a unifying model for all groups of patients and in all situations is appealing, this may prove difficult to attain. Alternatively, focused efforts on patient subgroups in the same clinical context and at certain clinically relevant 'decision points', that is at diagnosis and at initiation of first-line or subsequent treatments, may provide a more accurate approach. In this review, we discuss the advantages and disadvantages as well as the clinical applicability of three recently proposed prognostic models, the MD Anderson nomogram, the integrated cytogenetic and mutational model and the CLL-international prognostic index. We also consider future directions taking into account novel aspects of the disease, such as the tumour microenvironment and the dynamics of (sub)clonal evolution. These aspects are particularly relevant in view of the increasing number of new targeted therapies that have recently emerged.


Subject(s)
Leukemia, Lymphoid/diagnosis , Decision Support Techniques , Genes, p53/genetics , Humans , Leukemia, Lymphoid/genetics , Mutation , Prognosis
13.
Leukemia ; 29(2): 329-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24943832

ABSTRACT

Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Aged , Cytogenetics , DNA Mutational Analysis , Europe , Female , Gene Deletion , Humans , Male , Middle Aged , Multivariate Analysis , Phosphoproteins/genetics , Polymorphism, Single Nucleotide , Prognosis , RNA Splicing Factors , Receptor, Notch1/genetics , Recurrence , Ribonucleoprotein, U2 Small Nuclear/genetics , Time Factors , Tumor Suppressor Protein p53/genetics
16.
Leukemia ; 27(11): 2196-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23558524

ABSTRACT

Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset #2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; P<0.001). In contrast, the frequency of NOTCH1 mutations in subset #2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P=0.04 for subset #1 versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and implementing biologically oriented therapy.


Subject(s)
Biomarkers, Tumor/genetics , Inhibitor of Apoptosis Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/classification , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , Phosphoproteins/genetics , Receptor, Notch1/genetics , Ribonucleoprotein, U2 Small Nuclear/genetics , Baculoviral IAP Repeat-Containing 3 Protein , Cohort Studies , DNA, Neoplasm/genetics , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Polymerase Chain Reaction , Prognosis , RNA Splicing Factors , Survival Rate , Ubiquitin-Protein Ligases
19.
Leukemia ; 27(1): 150-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22922567

ABSTRACT

In chronic lymphocytic leukemia (CLL), the microenvironment influences gene expression patterns; however, knowledge is limited regarding the extent to which methylation changes with time and exposure to specific microenvironments. Using high-resolution 450K arrays, we provide the most comprehensive DNA methylation study of CLL to date, analyzing paired diagnostic/follow-up samples from IGHV-mutated/untreated and IGHV-unmutated/treated patients (n=36) and patient-matched peripheral blood and lymph node samples (n=20). On an unprecedented scale, we revealed 2239 differentially methylated CpG sites between IGHV-mutated and unmutated patients, with the majority of sites positioned outside annotated CpG islands. Intriguingly, CLL prognostic genes (for example, CLLU1, LPL, ZAP70 and NOTCH1), epigenetic regulator (for example, HDAC9, HDAC4 and DNMT3B), B-cell signaling (for example, IBTK) and numerous TGF-ß and NF-κB/TNF pathway genes were alternatively methylated between subgroups. Contrary, DNA methylation over time was deemed rather stable with few recurrent changes noted within subgroups. Although a larger number of non-recurrent changes were identified among IGHV-unmutated relative to mutated cases over time, these equated to a low global change. Similarly, few changes were identified between compartment cases. Altogether, we reveal CLL subgroups to display unique methylation profiles and unveil methylation as relatively stable over time and similar within different CLL compartments, implying aberrant methylation as an early leukemogenic event.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation , CpG Islands/genetics , DNA Methylation , Gene Expression Profiling , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Aged , B-Lymphocytes/pathology , Case-Control Studies , Cohort Studies , DNA, Neoplasm/genetics , Disease Progression , Female , Genome-Wide Association Study , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis
20.
Br J Cancer ; 106(12): 2016-24, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22669161

ABSTRACT

BACKGROUND: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. METHODS: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. RESULTS: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10-2.04 and HR 2.16, 95%CI 1.24-3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. CONCLUSION: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1 , Genes, BRCA2 , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Ovarian Neoplasms/genetics , Polymorphism, Genetic , Repressor Proteins/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Mutation , Prohibitins , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...