Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 12: 791095, 2021.
Article in English | MEDLINE | ID: mdl-35003110

ABSTRACT

Antibody secreting plasma cells are made in response to a variety of pathogenic and commensal microbes. While all plasma cells express a core gene transcription program that allows them to secrete large quantities of immunoglobulin, unique transcriptional profiles are linked to plasma cells expressing different antibody isotypes. IgA expressing plasma cells are generally thought of as short-lived in mucosal tissues and they have been understudied in systemic sites like the bone marrow. We find that IgA+ plasma cells in both the small intestine lamina propria and the bone marrow are long-lived and transcriptionally related compared to IgG and IgM expressing bone marrow plasma cells. IgA+ plasma cells show signs of shared clonality between the gut and bone marrow, but they do not recirculate at a significant rate and are found within bone marrow plasma cells niches. These data suggest that systemic and mucosal IgA+ plasma cells are from a common source, but they do not migrate between tissues. However, comparison of the plasma cells from the small intestine lamina propria to the bone marrow demonstrate a tissue specific gene transcription program. Understanding how these tissue specific gene networks are regulated in plasma cells could lead to increased understanding of the induction of mucosal versus systemic antibody responses and improve vaccine design.


Subject(s)
Bone Marrow Cells/metabolism , Immunoglobulin A, Secretory/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestines/metabolism , Plasma Cells/metabolism , Animals , Bone Marrow Cells/immunology , Cell Survival , Cellular Microenvironment , Gene Expression Regulation , Immunity, Mucosal , Immunoglobulin A, Secretory/genetics , Immunoglobulin A, Secretory/immunology , Intestinal Mucosa/immunology , Intestine, Small/immunology , Intestines/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Parabiosis , Phenotype , Plasma Cells/immunology , Time Factors , Transcription, Genetic , Transcriptome
2.
Immunity ; 52(5): 842-855.e6, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32353250

ABSTRACT

B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.


Subject(s)
Antibody Specificity/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Organ Specificity/immunology , T-Box Domain Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , HIV Antibodies/immunology , Humans , Influenza A virus/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Influenza, Human/virology , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL