Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 2093086, 2022.
Article in English | MEDLINE | ID: mdl-36601275

ABSTRACT

With this research, we apply range-resolved interferometry (RRI) to the maintenance of wind turbines using some of the most relevant machine-learning (ML) techniques. The degeneration of electrical and mechanical components of wind turbines can be predicted, detected, and anticipated using this method of automatic and autonomous learning. The vibrations in two different failure states are detected with the help of a scanner laser. In-process measurements taken by RRI agree with manual measurements, laser scanning measurements, and in-process hand measurements made following each working cycle. Consequently, the proposed method will be very useful for monitoring and diagnosing faults in wind turbines. The system will also be able to perform low-cost in-process measurements.


Subject(s)
Vibration
2.
Comput Biol Med ; 127: 104031, 2020 12.
Article in English | MEDLINE | ID: mdl-33096296

ABSTRACT

BACKGROUND: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based on an intrinsic electrical parameter of the ECGI solution. METHODS: In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial anatomy for ±2.5 cm and ±30° on each axis. An automatic optimization method based on the L-curve curvature was used to estimate the original position using exclusively non-invasive data. RESULTS: The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 ± 0.5 cm in position and 16.0 ± 10.7° in orientation. With these approximate locations, the obtained electrophysiological maps reduced the average error in atrial rate measures from 1.1 ± 1.1 Hz to 0.5 ± 1.0 Hz and in the phase singularity position from 7.2 ± 4.0 cm to 1.6 ± 1.7 cm (p < 0.01). CONCLUSIONS: This proposed automatic optimization may help to solve spatial inaccuracies provoked by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different medical image systems.


Subject(s)
Body Surface Potential Mapping , Electrocardiography , Algorithms , Diagnostic Imaging , Heart Atria/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...