Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 26(12): 108473, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077122

ABSTRACT

Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.

2.
Biol Direct ; 18(1): 60, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37736739

ABSTRACT

Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.


Subject(s)
Endosomes , Signal Transduction , Ribosomes , Peptide Hydrolases , Up-Regulation
3.
J Mol Cell Cardiol ; 157: 31-44, 2021 08.
Article in English | MEDLINE | ID: mdl-33894212

ABSTRACT

Essentially all biological processes fluctuate over the course of the day, manifesting as time-of-day-dependent variations with regards to the way in which organ systems respond to normal behaviors. For example, basic, translational, and epidemiologic studies indicate that temporal partitioning of metabolic processes governs the fate of dietary nutrients, in a manner in which concentrating caloric intake towards the end of the day is detrimental to both cardiometabolic and cardiovascular parameters. Despite appreciation that branched chain amino acids impact risk for obesity, diabetes mellitus, and heart failure, it is currently unknown whether the time-of-day at which dietary BCAAs are consumed influence cardiometabolic/cardiovascular outcomes. Here, we report that feeding mice a BCAA-enriched meal at the end of the active period (i.e., last 4 h of the dark phase) rapidly increases cardiac protein synthesis and mass, as well as cardiomyocyte size; consumption of the same meal at the beginning of the active period (i.e., first 4 h of the dark phase) is without effect. This was associated with a greater BCAA-induced activation of mTOR signaling in the heart at the end of the active period; pharmacological inhibition of mTOR (through rapamycin) blocked BCAA-induced augmentation of cardiac mass and cardiomyocyte size. Moreover, genetic disruption of the cardiomyocyte circadian clock abolished time-of-day-dependent fluctuations in BCAA-responsiveness. Finally, we report that repetitive consumption of BCAA-enriched meals at the end of the active period accelerated adverse cardiac remodeling and contractile dysfunction in mice subjected to transverse aortic constriction. Thus, our data demonstrate that the timing of BCAA consumption has significant implications for cardiac health and disease.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Energy Metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Wakefulness , ARNTL Transcription Factors/deficiency , Animals , Biomarkers , Circadian Clocks , Disease Susceptibility , Eating , Mice , Mice, Knockout , Protein Biosynthesis , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Ventricular Remodeling/genetics
4.
Int J Obes (Lond) ; 44(9): 1936-1945, 2020 09.
Article in English | MEDLINE | ID: mdl-32546855

ABSTRACT

OBJECTIVE: Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear. METHODS: Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage ("supplementation") of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light-dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography-mass spectrometry and real-time PCR, respectively. RESULTS: Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO. CONCLUSIONS: Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity.


Subject(s)
Behavior, Animal/drug effects , Brain , Diet, High-Fat/adverse effects , Fish Oils/pharmacology , Obesity , Adipose Tissue/drug effects , Animals , Anxiety , Brain/drug effects , Brain/metabolism , Brain Chemistry/drug effects , Depression , Dietary Supplements , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/psychology
5.
Article in English | MEDLINE | ID: mdl-31568924

ABSTRACT

Nutritional deficiencies often precede the diagnosis of cystic fibrosis (CF) in infants, and occur at a stage where the rapidly developing brain is more vulnerable to insult. We aim to compare fat-soluble nutrient status of newly diagnosed non-screened infants with CF to that of healthy infants, and explore the association with neurodevelopment evaluated by electroencephalography (EEG). Our results show that CF infants had lower levels of all fat-soluble vitamins and docosahexaenoic acid (DHA) compared to controls. The auditory evoked potential responses were higher in CF compared to controls whereas the visual components did not differ between groups. DHA levels were correlated with auditory evoked potential responses. Although resting state frequency power was similar between groups, we observed a negative correlation between DHA levels and low frequencies. This study emphasizes the need for long-term neurodevelopmental follow-up of CF infants and pursuing intervention strategies in the future.


Subject(s)
Cystic Fibrosis/physiopathology , Docosahexaenoic Acids/analysis , Evoked Potentials, Auditory , Evoked Potentials, Visual , Vitamins/analysis , Case-Control Studies , Cystic Fibrosis/metabolism , Electroencephalography , Female , Humans , Infant , Male , Pilot Projects , Rest
6.
J Nutr ; 149(1): 57-67, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30535058

ABSTRACT

Background: δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective: The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods: This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results: While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions: Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.


Subject(s)
Apolipoproteins B/blood , Diabetes Mellitus, Type 2/metabolism , Fatty Acid Desaturases/metabolism , Overweight/metabolism , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Female , Gene Expression Regulation, Enzymologic , Humans , Male , Middle Aged , Risk Factors
7.
Psychoneuroendocrinology ; 83: 142-149, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28623763

ABSTRACT

Overconsumption of dietary fat can elicit impairments in emotional processes and the response to stress. While excess dietary lipids have been shown to alter hypothalamus-pituitary-adrenal (HPA) axis function and promote anxiety-like behaviour, it is not known if such changes rely on elevated body weight and if these effects are specific to the type of dietary fat. The objective of this study was to investigate the effect of a saturated and a monounsaturated high-fat diet (HFD) on HPA axis function and anxiety-like behaviour in rats. Biochemical, metabolic and behavioural responses were evaluated following eight weeks on one of three diets: (1) a monounsaturated HFD (50%kcal olive oil), (2) a saturated HFD (50%kcal palm oil), or (3) a control low-fat diet. Weight gain was similar across the three diets while visceral fat mass was elevated by the two HFDs. The saturated HFD had specific actions to increase peak plasma levels of corticosterone and tumour-necrosis-factor-alpha and suppress mRNA expression of glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone and 11ß-hydroxysteroid dehydrogenase-1 in the paraventricular nucleus of the hypothalamus. Both HFDs enhanced the corticosterone-suppressing response to dexamethasone administration without affecting the physiological response to a restraint stress and failed to increase anxiety-like behaviour as measured in the elevated-plus maze and open field tests. These findings demonstrate that prolonged intake of saturated fat, without added weight gain, increases CORT and modulates central HPA feedback processes. That saturated HFD failed to affect anxiety-like behaviour can suggest that the anxiogenic effects of prolonged high-fat feeding may rely on more pronounced metabolic dysfunction.


Subject(s)
Anxiety/metabolism , Diet, High-Fat/adverse effects , Diet, High-Fat/psychology , Animals , Anxiety Disorders/metabolism , Body Weight , Corticosterone/analysis , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Dexamethasone/pharmacology , Dietary Fats/metabolism , Disease Models, Animal , Fatty Acids/adverse effects , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Glucocorticoids/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Male , Obesity/metabolism , Obesity/psychology , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Glucocorticoid/metabolism , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/blood , Weight Gain
8.
Metabolism ; 72: 66-74, 2017 07.
Article in English | MEDLINE | ID: mdl-28641785

ABSTRACT

OBJECTIVE: Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. METHODS/RESULTS: We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII+/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII+/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03µmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII+/- hearts. CONCLUSIONS: These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism.


Subject(s)
Hexokinase/metabolism , Mitochondria/metabolism , Myocardium/metabolism , Oxygen Consumption , Animals , Energy Metabolism , Isolated Heart Preparation , Mice , Myocardium/ultrastructure
9.
J Am Heart Assoc ; 3(4)2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25128474

ABSTRACT

BACKGROUND: Angiopoietin-like-2 (angptl2) is produced by several cell types including endothelial cells, adipocytes and macrophages, and contributes to the inflammatory process in cardiovascular diseases. We hypothesized that angptl2 impairs endothelial function, and that lowering angptl2 levels protects the endothelium against high-fat diet (HFD)-induced fat accumulation and hypercholesterolemia. METHODS AND RESULTS: Acute recombinant angptl2 reduced (P<0.05) acetylcholine-mediated vasodilation of isolated wild-type (WT) mouse femoral artery, an effect reversed (P<0.05) by the antioxidant N-acetylcysteine. Accordingly, in angptl2 knockdown (KD) mice, ACh-mediated endothelium-dependent vasodilation was greater (P<0.05) than in WT mice. In arteries from KD mice, prostacyclin contributed to the overall dilation unlike in WT mice. After a 3-month HFD, overall vasodilation was not altered, but dissecting out the endothelial intrinsic pathways revealed that NO production was reduced in arteries isolated from HFD-fed WT mice (P<0.05), while NO release was maintained in KD mice. Similarly, endothelium-derived hyperpolarizing factor (EDHF) was preserved in mesenteric arteries from HFD-fed KD mice but not in those from WT mice. Finally, the HFD increased (P<0.05) total cholesterol-to-high-density lipoprotein ratios, low-density lipoprotein-to-high-density lipoprotein ratios, and leptin levels in WT mice only, while glycemia remained similar in the 2 strains. KD mice displayed less triglyceride accumulation in the liver (P<0.05 versus WT), and adipocyte diameters in mesenteric and epididymal white adipose tissues were smaller (P<0.05) in KD than in WT fed an HFD, while inflammatory gene expression increased (P<0.05) in the fat of WT mice only. CONCLUSIONS: Lack of angptl2 expression limits the metabolic stress induced by an HFD and maintains endothelial function in mice.


Subject(s)
Angiopoietins/genetics , Diet, High-Fat , Endothelium, Vascular/metabolism , Femoral Artery/metabolism , Oxidative Stress/genetics , Vasodilation/genetics , Acetylcholine/metabolism , Acetylcysteine/pharmacology , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Angiopoietins/metabolism , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Epoprostenol/metabolism , Femoral Artery/drug effects , Femoral Artery/physiopathology , Free Radical Scavengers/pharmacology , Gene Knockdown Techniques , Mice , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Vasodilation/drug effects
10.
Nutr Res Rev ; 25(2): 288-301, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23174512

ABSTRACT

Endothelial dysfunction is a turning point in the initiation and development of atherosclerosis and its complications and is predictive of future cardiovascular events. Ingestion of high-carbohydrate or high-fat meals often results in postprandial hyperglycaemia and/or hypertriacylglycerolaemia that may lead to a transient impairment in endothelial function. The present review will discuss human studies evaluating the impact of high-carbohydrate and high-fat challenges on postprandial endothelial function as well as the potential role of oxidative stress in such postprandial metabolic alterations. Moreover, the present review will differentiate the postprandial endothelial and oxidative impact of meals rich in varying fatty acid types.


Subject(s)
Endothelium, Vascular/physiopathology , Hyperglycemia/physiopathology , Hypertriglyceridemia/physiopathology , Oxidative Stress/physiology , Atherosclerosis , Diet, High-Fat/adverse effects , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/adverse effects , Fatty Acids/administration & dosage , Fatty Acids, Monounsaturated/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Glucose Tolerance Test , Humans , Hyperglycemia/etiology , Hypertriglyceridemia/etiology , Lipid Peroxidation , Trans Fatty Acids/administration & dosage
11.
Am J Physiol Heart Circ Physiol ; 302(5): H1086-93, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22180654

ABSTRACT

Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-(13)Carbon((13)C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 µg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-(13)C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and (13)C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, (13)C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion.


Subject(s)
Cardiopulmonary Bypass , Citric Acid Cycle , Myocardial Reperfusion , Myocardium/metabolism , Triiodothyronine/metabolism , Animals , Animals, Newborn , Aspartic Acid/metabolism , Cardiac Output/drug effects , Decarboxylation , Heart/physiology , Hypothermia, Induced , Male , Models, Animal , Oxygen Consumption/drug effects , Pyruvic Acid/metabolism , Swine , Triiodothyronine/physiology
12.
Free Radic Biol Med ; 47(10): 1375-85, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19682568

ABSTRACT

Quantification of 4-hydroxy-2-nonenal (HNE) bound to circulating proteins may prove to be useful in evaluating the role of this bioactive lipoperoxidation by-product in the pathogenesis of various diseases. Recently, we developed a quantitative gas chromatography-mass spectrometry (GCMS) assay of total protein-bound HNE (HNE-P) in blood after reduction with NaB(2)H(4) and cleavage with Raney nickel. Whereas it has been assumed that Raney nickel cleaves only Michael adducts of HNE to cysteine via a thioether bond (HNE-SP), results from this study demonstrate that our GCMS method also detects with precision picomoles of HNE adducts via nitrogen residues (HNE-NP). Specifically, evidence was obtained using various study models, including polyamino acids consisting of cysteine, lysine, and histidine and a biologically relevant molecule, albumin. Furthermore, we show that dinitrophenylhydrazine treatment before Raney nickel treatment can be used to discriminate and quantify the various HNE-P molecular species in plasma and blood samples from normal rats, which range between 0.15 and 3 pmol/mg protein or 10 to 600 nM. However, whereas HNE-SP predominated in whole blood, we detected HNE-NP only in plasma. We also identified another significant MS signal, which we attribute to protein-bound 1,4-dihydroxynonane (DHN-P) presumably formed from the enzymatic reduction of HNE-P. The distribution profile of all these species in plasma differed from that observed when physiologically relevant concentrations of albumin and HNE were incubated in vitro. Furthermore, interestingly, hypercholesterolemic rabbits showed higher plasma levels of HNE-NP, but not of DHN-P. Beyond documenting the presence of various types of HNE-P in circulating proteins, our results emphasize the importance of enzymatic mechanisms in situ as a factor determining their distribution in the various blood compartments under various conditions.


Subject(s)
Aldehydes/analysis , Blood Proteins/chemistry , Histidine/chemistry , Lysine/chemistry , Nickel/chemistry , Animals , Gas Chromatography-Mass Spectrometry , Male , Rabbits
13.
Am J Physiol Endocrinol Metab ; 284(2): E351-6, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12388135

ABSTRACT

Normal cardiac metabolism requires continuous replenishment (anaplerosis) of catalytic intermediates of the citric acid cycle. Little is known about the quantitative aspects of propionate as a substrate of in vivo anaplerosis; therefore, we measured the rate of propionate entry into the citric acid cycle in hearts of anesthetized pigs. [U-(13)C(3)]propionate (0.25 mM) was infused in a coronary artery branch for 1 h via an extracorporeal perfusion circuit, and cardiac biopsies were analyzed for the mass isotopomer distribution of citric acid cycle intermediates. Infusion of propionate did not affect myocardial oxygen consumption, heart rate, or contractile function. In the infused territory, propionate infusion did not affect uptake of glucose and lactate but decreased free fatty acid uptake by one-half (P < 0.05). Propionate extraction and uptake were 57.4 +/- 3.3% and 0.078 +/- 0.009 micromol x min(-1) x g(-1). Anaplerosis from propionate, calculated from the mass isotopomer distribution of succinate, accounted for 8.9 +/- 1.3% of the citric acid cycle flux. Propioylcarnitine release accounted for only 0.033 +/- 0.002% of propionate uptake. Methylcitrate did not accumulate. Thus administration of a low concentration of propionate appears to be a convenient and safe way to boost anaplerosis in the heart.


Subject(s)
Citric Acid Cycle/physiology , Myocardium/metabolism , Propionates/pharmacokinetics , Animals , Carbon Isotopes , Mass Spectrometry , Myocardial Contraction/physiology , Oxygen Consumption/physiology , Swine , Ventricular Pressure/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...