Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Eye Res ; 238: 109729, 2024 01.
Article in English | MEDLINE | ID: mdl-38052338

ABSTRACT

PURPOSE: To characterize the neuronal and vascular pathology in vivo and in vitro in a mouse model of radiation retinopathy. METHODS: C57Bl/6J mice underwent cranial irradiation with 12 Gy and in vivo imaging by optical coherence tomography and of relative blood flow velocity by laser speckle flowgraphy for up to 3-6 months after irradiation. Retinal architecture, vascular density and leakage and apoptosis were analyzed by histology and immunohistochemistry before irradiation or at 10, 30, 240, and 365 days after treatment. RESULTS: The vascular density decreased in the plexiform layers starting at 30 days after irradiation. No impairment in retinal flow velocity was seen. Subtle perivascular leakage was present at 10 days, in particular in the outer plexiform layer. This corresponded to increased width of this layer. However, no significant change in the retinal thickness was detected by OCT-B scans. At 365 days after irradiation, the nuclear density was significantly reduced compared to baseline. Apoptosis was detected at 30 days and less prominent at 365 days. CONCLUSIONS: By histology, vascular leakage at 10 days was followed by increased neuronal apoptosis and loss of neuronal and vascular density. However, in vivo imaging approaches that are commonly used in human patients did not detect pathology in mice.


Subject(s)
Radiation Injuries , Retinal Diseases , Humans , Mice , Animals , Fluorescein Angiography , Retina , Retinal Vessels/pathology , Neurons , Disease Models, Animal , Radiation Injuries/pathology , Retinal Diseases/etiology , Retinal Diseases/pathology , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL