Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Phys Med Rehabil ; 104(10): 1646-1651, 2023 10.
Article in English | MEDLINE | ID: mdl-37268274

ABSTRACT

OBJECTIVE: To determine the interrater reliability of the Scale for the Assessment and Rating of Ataxia (SARA), Berg Balance Scale (BBS), and motor domain of the FIM (m-FIM) administered by physiotherapists in individuals with a hereditary cerebellar ataxia (HCA). DESIGN: Participants were assessed by 1 of 4 physiotherapists. Assessments were video-recorded and the remaining 3 physiotherapists scored the scales for each participant. Raters were blinded to each other's scores. SETTING: Assessments were administered at 3 clinical locations in separate states in Australia. PARTICIPANTS: Twenty-one individuals (mean age=47.63 years; SD=18.42; 13 male and 8 female) living in the community with an HCA were recruited (N=21). MAIN OUTCOME MEASURES: Total and single-item scores of the SARA, BBS, and m-FIM were examined. The m-FIM was conducted by interview. RESULTS: Intraclass coefficients (2,1) for the total scores of the m-FIM (0.92; 95% confidence interval [CI], 0.85-0.96), SARA (0.92; 95% CI, 0.86-0.96), and BBS (0.99; 95% CI, 0.98-0.99) indicated excellent interrater reliability. However, there was inconsistent agreement with the individual items, with SARA item 5 (right side) and item 7 (both sides) demonstrating poor interrater reliability and items 1 and 2 demonstrating excellent reliability. CONCLUSIONS: The m-FIM (by interview), SARA, and BBS have excellent interrater reliability for use when assessing individuals with an HCA. Physiotherapists could be considered for administration of the SARA in clinical trials. However, further work is required to improve the agreement of the single-item scores and to examine the other psychometric properties of these scales.


Subject(s)
Cerebellar Ataxia , Humans , Male , Female , Middle Aged , Cerebellar Ataxia/rehabilitation , Reproducibility of Results , Functional Status , Disability Evaluation , Psychometrics , Postural Balance
2.
Calcif Tissue Int ; 101(5): 479-488, 2017 11.
Article in English | MEDLINE | ID: mdl-28710506

ABSTRACT

Though still a topic of debate, the position that skeletal health is compromised with obesity has received support in the pediatric and adult literature. The limited data relating specifically to trabecular bone microarchitecture, however, have been relatively inconsistent. The aim of this pilot cross-sectional case-control study was to compare trabecular bone microarchitecture between obese (OB) and normal-weight (NW) late-adolescent females. A secondary aim was to compare diaphyseal cortical bone outcomes between these two groups. Twenty-four non-Hispanic white females, ages 18-19 years, were recruited into OB (n = 12) or NW (n = 12) groups based on pre-specified criteria for percent body fat (≥32 vs. <30, respectively), body mass index (>90th vs. 20th-79th, respectively), and waist circumference (≥90th vs. 25th-75th, respectively). Participants were also individually matched on age, height, and oral contraceptive use. Using magnetic resonance imaging, trabecular bone microarchitecture was assessed at the distal radius and proximal tibia metaphysis, and cortical bone architecture was assessed at the mid-radius and mid-tibia diaphysis. OB versus NW had lower apparent trabecular thickness (radius and tibia), higher apparent trabecular separation (radius), and lower apparent bone volume to total volume (radius; all P < 0.050). Some differences in radius and tibia trabecular bone microarchitecture were retained after adjusting for insulin resistance or age at menarche. Mid-radius and mid-tibia cortical bone volume and estimated strength were lower in the OB compared to NW after adjusting for fat-free soft tissue mass (all P < 0.050). These trabecular and cortical bone deficits might contribute to the increased fracture risk in obese youth.


Subject(s)
Cancellous Bone/diagnostic imaging , Obesity/diagnostic imaging , Adolescent , Body Weight , Case-Control Studies , Cortical Bone/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Pilot Projects , Young Adult
3.
Int J Sport Nutr Exerc Metab ; 25(2): 136-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25029040

ABSTRACT

Assessment of physical activity in clinical bone studies is essential. Two bone-specific physical activity scoring methods, the Bone Loading History Questionnaire (BLHQ) and Bone-Specific Physical Activity Questionnaire (BPAQ), have shown correlations with bone density and geometry, but not architecture. The purpose of this study was to determine relationships between physical activity scoring methods and bone architecture in non-Hispanic white adolescent females (N = 24; 18-19 years of age). Bone loading scores (BLHQ [hip and spine] and past BPAQ) and energy expenditure (7-day physical activity recall) were determined from respective questionnaires. Estimates of trabecular and cortical bone architecture at the nondominant radius and tibia were assessed via magnetic resonance imaging. Total body and regional areal bone mineral density (aBMD), as well as total body fat mass and fat-free soft tissue (FFST) mass were assessed via dual energy X-ray absorptiometry. Pearson's correlations and partial correlations adjusting for height, total body fat mass, and FFST were performed. Hip BLHQ scores were correlated with midtibia cortical volume (r = .43; p = .03). Adjusted hip and spine BLHQ scores were correlated with all midtibia cortical measures (r = .50-0.58; p < .05) and distal radius apparent trabecular number (r = .46-0.53; p < .05). BPAQ scores were correlated with all midtibia cortical (r = .41-0.51; p < .05) and most aBMD (r = .47-0.53; p < .05) measures. Energy expenditure was inversely associated with femoral neck aBMD only after statistical adjustment (r = .49, p < .05). These data show that greater load-specific physical activity scores, but not energy expenditure, are indicative of greater midtibia cortical bone quality, thus supporting the utility of these instruments in musculoskeletal research.


Subject(s)
Energy Metabolism , Exercise , Tibia , Weight-Bearing , Absorptiometry, Photon , Adolescent , Adult , Bone Density , Female , Femur , Hip , Humans , Leg , Magnetic Resonance Imaging/methods , Physical Exertion , Spine , Sports , Tibia/anatomy & histology , Tibia/growth & development , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...