Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Psychiatry ; 15: 1369767, 2024.
Article in English | MEDLINE | ID: mdl-38751416

ABSTRACT

Introduction: Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer susceptibility for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD susceptibility, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. Methods: In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Results: Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that susceptibility for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Discussion: Our findings suggest that cognitive ability itself may not be the factor driving the underlying liability for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

2.
Genet Med ; 26(1): 100967, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37638500

ABSTRACT

PURPOSE: The genetic etiology of amyotrophic lateral sclerosis (ALS) includes few rare, large-effect variants and potentially many common, small-effect variants per case. The genetic risk liability for ALS might require a threshold comprised of a certain amount of variants. Here, we tested the degree to which risk for ALS was affected by rare variants in ALS genes, polygenic risk score, or both. METHODS: 335 ALS cases and 356 controls from Québec, Canada were concurrently tested by microarray genotyping and targeted sequencing of ALS genes known at the time of study inception. ALS genome-wide association studies summary statistics were used to estimate an ALS polygenic risk score (PRS). Cases and controls were subdivided into rare-variant heterozygotes and non-heterozygotes. RESULTS: Risk for ALS was significantly associated with PRS and rare variants independently in a logistic regression model. Although ALS PRS predicted a small amount of ALS risk overall, the effect was most pronounced between ALS cases and controls that were not heterozygous for a rare variant in the ALS genes surveyed. CONCLUSION: Both PRS and rare variants in ALS genes impact risk for ALS. PRS for ALS is most informative when rare variants are not observed in ALS genes.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Genetic Association Studies , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/genetics , Genome-Wide Association Study , Canada , Genome , Genetic Predisposition to Disease
3.
medRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076919

ABSTRACT

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

4.
PLoS Genet ; 19(2): e1010606, 2023 02.
Article in English | MEDLINE | ID: mdl-36745687

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by progressive loss of motor neurons and there is currently no effective therapy. Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein 43 kDa (TDP-43) within the CNS is a pathological hallmark in sporadic ALS and prion-like propagation of pathogenic TDP-43 is thought to be implicated in disease progression. However, cell-to-cell transmission of pathogenic TDP-43 in the human CNS has not been confirmed experimentally. Here we used induced pluripotent stem cells (iPSCs)-derived cerebral organoids as recipient CNS tissue model that are anatomically relevant human brain. We injected postmortem spinal cord protein extracts individually from three non-ALS or five sporadic ALS patients containing pathogenic TDP-43 into the cerebral organoids to validate the templated propagation and spreading of TDP-43 pathology in human CNS tissue. We first demonstrated that the administration of spinal cord extracts from an ALS patient induced the formation of TDP-43 pathology that progressively spread in a time-dependent manner in cerebral organoids, suggesting that pathogenic TDP-43 from ALS functioned as seeds and propagated cell-to-cell to form de novo TDP-43 pathology. We also reported that the administration of ALS patient-derived protein extracts caused astrocyte proliferation to form astrogliosis in cerebral organoids, reproducing the pathological feature seen in ALS. Moreover, we showed pathogenic TDP-43 induced cellular apoptosis and that TDP-43 pathology correlated with genomic damage due to DNA double-strand breaks. Thus, our results provide evidence that patient-derived pathogenic TDP-43 can mimic the prion-like propagation of TDP-43 pathology in human CNS tissue. Our findings indicate that our assays with human cerebral organoids that replicate ALS pathophysiology have a promising strategy for creating readouts that could be used in future drug discovery efforts against ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Prions , Humans , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prions/metabolism , Organoids/metabolism
5.
medRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38168192

ABSTRACT

Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. Here, we present a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in three population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). Genome-wide association analysis identified nine independent risk loci, of which eight had been previously reported, and one was a novel risk locus (LMX1B, rs35196838, OR = 1.14, 95% CI = 1.09-1.19, p-value = 2.2 × 10-9). A genome-wide, gene-based common variant analysis identified GLO1 as an additional risk gene (p-value = 8.45 × 10-7). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p-value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p-value = 4.0 × 10-4). Our study expands the understanding of the genetic architecture of RLS and highlights the contributions of common variants to this prevalent neurological disorder.

6.
BMC Med ; 20(1): 382, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36320012

ABSTRACT

BACKGROUND: Epidemiological studies have reported an association between amyotrophic lateral sclerosis (ALS) and different autoimmune disorders. This study aims to explore the causal relationship between autoimmune disorders and ALS using Mendelian randomization (MR). METHODS: To test the genetically predicted effects of liability towards immune-related outcomes on ALS risk, we used summary statistics from the largest European genome-wide association studies (GWAS) for these disorders in a two-sample MR setting. To do this, we extracted single nucleotide polymorphisms (SNPs) from the GWAS, which strongly associated with the 12 traits, and queried their effects in a large European ALS GWAS (27,265 cases and 110,881 controls). To avoid bias in our MR instruments related to the complex linkage disequilibrium structure of the human leukocyte antigen (HLA) region, we excluded SNPs within this region from the analyses. We computed inverse-variance weighted (IVW) MR estimates and undertook sensitivity analyses using MR methods robust to horizontal pleiotropy. We also performed a reverse MR analysis testing the causal effects of ALS on the above autoimmune traits. RESULTS: After applying Bonferroni correction for multiple testing, our MR analyses showed that the liability to autoimmune disorders does not affect ALS risk. Our reverse MR analysis also did not support the effects of liability to ALS on other autoimmune disorders. The results of the main IVW MR analyses were generally supported by our sensitivity MR analyses. The variance in the exposures explained by the sets of SNPs used as MR instruments ranged from 8.1 × 10-4 to 0.31. Our MR study was well-powered to detect effects as small as an odds ratio (OR) of 1.045 for ALS in the main MR and as small as an OR of 1.32 in the reverse MR. CONCLUSION: Our MR study does not support a relationship between liability to autoimmune disorders and ALS risk in the European population. The associations observed in epidemiological studies could be partly attributed to shared biology or environmental confounders.


Subject(s)
Amyotrophic Lateral Sclerosis , Autoimmune Diseases , Humans , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
7.
Neurol Genet ; 8(4): e678, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35923349

ABSTRACT

Objectives: Recently, the number of dinucleotide CA repeats in an intron of the STMN2 gene was reported to be associated with an increased risk for amyotrophic lateral sclerosis (ALS). Therefore, we sought to replicate this observation in an independent group of ALS patients and a much larger control group. Methods: Here, we used whole-genome sequencing and tested the STMN2 CA repeat in a case-control cohort of the European genetic background and in genomes from various populations in the gnomAD cohort to attempt to replicate this proposed association. Results: We find that repeats well above the previously reported pathogenic threshold of 19 are commonly observed in unaffected individuals across different populations. Furthermore, we did not observe an association between longer STMN2 CA repeats and ALS phenotype. Discussion: In summary, our results do not support a role of STMN2 CA repeats toward ALS risk. As TDP-43 aggregation is central to ALS pathogenesis, lowered expression of STMN2 could be used as a biomarker for ALS. Therefore, a variant associated both with the risk for ALS and the level of STMN2 expression would be clinically useful. However, for a variant to be actionable, it must be strongly replicated in independent cohorts and exceed the rigorous statistical thresholds applied.

8.
NPJ Genom Med ; 7(1): 46, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927430

ABSTRACT

Essential tremor (ET) is one of the most common movement disorders, affecting nearly 5% of individuals over 65 years old. Despite this, few genetic risk loci for ET have been identified. Recent advances in pharmacogenomics have previously been useful to identify disease related molecular targets. Notably, gene expression has proven to be quite successful for the inference of drug response in cell models. We sought to leverage this approach in the context of ET where many patients are responsive to two drugs: propranolol and primidone. In this study, cerebellar DAOY and neural progenitor cells were treated for 5 days with clinical concentrations of propranolol and primidone, after which RNA-sequencing was used to identify convergent differentially expressed genes across treatments. Propranolol was found to affect the expression of genes previously associated with ET and other movement disorders such as TRAPPC11. Pathway enrichment analysis of these convergent drug-targeted genes identified multiple terms related to calcium signaling, endosomal sorting, axon guidance, and neuronal morphology. Furthermore, genes targeted by ET drugs were enriched within cell types having high expression of ET-related genes in both cortical and cerebellar tissues. Altogether, our results highlight potential cellular and molecular mechanisms associated with tremor reduction and identify relevant genetic biomarkers for drug-responsiveness in ET.

10.
Commun Biol ; 5(1): 289, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354918

ABSTRACT

Tourette's Syndrome (TS) is a neurodevelopmental disorder that is characterized by motor and phonic tics. A recent TS genome-wide association study (GWAS) identified a genome-wide significant locus. However, determining the biological mechanism of GWAS signals remains difficult. To characterize effects of expression quantitative trait loci (eQTLs) in TS and understand biological underpinnings of the disease. Here, we conduct a TS transcriptome-wide association study (TWAS) consisting of 4819 cases and 9488 controls. We demonstrate that increased expression of FLT3 in the dorsolateral prefrontal cortex (DLPFC) is associated with TS. We further show that there is global dysregulation of FLT3 across several brain regions and probabilistic causal fine-mapping of the TWAS signal prioritizes FLT3 with a posterior inclusion probability of 0.849. After, we proxy the expression with 100 lymphoblastoid cell lines, and demonstrate that TS cells has a 1.72 increased fold change compared to controls. A phenome-wide association study also points toward FLT3 having links with immune-related pathways such as monocyte count. We further identify several splicing events in MPHOSPH9, CSGALNACT2 and FIP1L1 associated with TS, which are also implicated in immune function. This analysis of expression and splicing begins to explore the biology of TS GWAS signals.


Subject(s)
Tourette Syndrome , Case-Control Studies , Genome-Wide Association Study , Humans , Quantitative Trait Loci , Tourette Syndrome/genetics , Transcriptome , fms-Like Tyrosine Kinase 3
11.
Sci Transl Med ; 14(633): eabj0264, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196023

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Cholesterol , DNA Methylation/genetics , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Neurodegenerative Diseases/genetics
12.
Stroke ; 53(4): 1263-1275, 2022 04.
Article in English | MEDLINE | ID: mdl-34991336

ABSTRACT

BACKGROUND: Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS: To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS: In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS: Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.


Subject(s)
Adenosine Triphosphatases , Moyamoya Disease , Ubiquitin-Protein Ligases , Adenosine Triphosphatases/genetics , Endothelial Cells/metabolism , Endothelium , Genetic Predisposition to Disease , Humans , Moyamoya Disease/pathology , Transcription Factors , Ubiquitin-Protein Ligases/genetics
13.
JAMA Neurol ; 79(2): 185-193, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34982113

ABSTRACT

Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, Setting, and Participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main Outcomes and Measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and Relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET.


Subject(s)
Essential Tremor/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Transcriptome
14.
Neurol Genet ; 7(4): e600, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34017912

ABSTRACT

OBJECTIVE: To report the association between type 1 Gaucher disease (GD1) and amyotrophic lateral sclerosis (ALS) in 3 unrelated families and to explore whether GBA variants influence the risk of ALS. METHODS: We conducted retrospective chart reviews of patients with GD1 or their family members diagnosed with ALS. To further investigate whether there is an association between ALS and GD, we performed exploratory analyses for the presence of GBA variants in 3 ALS cohorts from Toronto (Canada), Montreal (Canada), and Project MinE (international), totaling 4,653 patients with ALS and 1,832 controls. RESULTS: We describe 2 patients with GD1 and 1 obligate GBA mutation carrier (mother of GD1 patient) with ALS. We identified 0 and 8 GBA carriers in the Toronto and Montreal cohorts, respectively. The frequencies of GBA variants in patients with ALS in the Montreal and Project MinE cohorts were similar to those of Project MinE controls or Genome Aggregation Database population controls. CONCLUSIONS: The occurrence of ALS in biallelic or monoallelic GBA mutation carriers described here, in addition to common pathogenic pathways shared by GD1 and ALS, suggests that GBA variants could influence ALS risk. However, analyses of GBA variants in ALS cohorts did not reveal a meaningful association. Examination of larger cohorts and neuropathologic studies will be required to elucidate whether patients with GD1 are indeed at increased risk for ALS.

15.
Mov Disord ; 36(7): 1664-1675, 2021 07.
Article in English | MEDLINE | ID: mdl-33598982

ABSTRACT

BACKGROUND: Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES: We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS: We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS: The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS: Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Spastic Paraplegia, Hereditary , ATP-Dependent Proteases , ATPases Associated with Diverse Cellular Activities/genetics , Canada , Humans , Metalloendopeptidases/genetics , Mutation/genetics , Paraplegia , Spastic Paraplegia, Hereditary/genetics , Transcription Factors
16.
Mov Disord ; 36(2): 514-518, 2021 02.
Article in English | MEDLINE | ID: mdl-33159825

ABSTRACT

BACKGROUND: Spinocerebellar ataxia types 1, 2, 3 and Huntington disease are neurodegenerative disorders caused by expanded CAG repeats. METHODS: We performed an in-silico analysis of CAG repeats in ATXN1, ATXN2, ATXN3, and HTT using 30× whole-=genome sequencing data of 2504 samples from the 1000 Genomes Project. RESULTS: Seven HTT-positive, 3 ATXN2-positive, 1 ATXN3-positive, and 6 possibly ATXN1-positive samples were identified. No correlation was found between the repeat sizes of the different genes. The distribution of CAG alleles varied by ethnicity. CONCLUSION: Our results suggest that there may be asymptomatic small expanded repeats in almost 0.5% of these populations. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Huntington Disease , Spinocerebellar Ataxias , Alleles , Ataxin-1/genetics , Ataxin-2/genetics , Ataxin-3/genetics , Humans , Huntingtin Protein/genetics , Repressor Proteins/genetics , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/genetics
18.
Am J Hum Genet ; 107(3): 445-460, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32750315

ABSTRACT

Tandem repeats are proposed to contribute to human-specific traits, and more than 40 tandem repeat expansions are known to cause neurological disease. Here, we characterize a human-specific 69 bp variable number tandem repeat (VNTR) in the last intron of WDR7, which exhibits striking variability in both copy number and nucleotide composition, as revealed by long-read sequencing. In addition, greater repeat copy number is significantly enriched in three independent cohorts of individuals with sporadic amyotrophic lateral sclerosis (ALS). Each unit of the repeat forms a stem-loop structure with the potential to produce microRNAs, and the repeat RNA can aggregate when expressed in cells. We leveraged its remarkable sequence variability to align the repeat in 288 samples and uncover its mechanism of expansion. We found that the repeat expands in the 3'-5' direction, in groups of repeat units divisible by two. The expansion patterns we observed were consistent with duplication events, and a replication error called template switching. We also observed that the VNTR is expanded in both Denisovan and Neanderthal genomes but is fixed at one copy or fewer in non-human primates. Evaluating the repeat in 1000 Genomes Project samples reveals that some repeat segments are solely present or absent in certain geographic populations. The large size of the repeat unit in this VNTR, along with our multiplexed sequencing strategy, provides an unprecedented opportunity to study mechanisms of repeat expansion, and a framework for evaluating the roles of VNTRs in human evolution and disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Amyotrophic Lateral Sclerosis/genetics , Evolution, Molecular , Tandem Repeat Sequences/genetics , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA Repeat Expansion/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Minisatellite Repeats/genetics , Phenotype , Species Specificity
19.
Commun Biol ; 3(1): 373, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651461

ABSTRACT

Restless legs syndrome (RLS) is a common neurological condition, with a prevalence of 5-15% in Central Europe and North America. Although genome-wide association studies (GWAS) have identified some common risk regions for RLS, the causal genes have yet to be fully elucidated. We conducted a transcriptome-wide association study involving 15,126 RLS cases and 95,725 controls, from the most recent meta-analysis of GWAS, and gene expression weights of GTEx v7 and the CMC dorsolateral prefrontal cortex tissue panels. We identified 13 associations (in 8 independent loci) at the transcriptome-wide significant level, of which 6 were not implicated in the previous GWAS: SKAP1, SLC36A1, CCDC57, FN3KRP, NCOA6/TRPC4AP. A fine-mapping approach prioritized CMTR1, RP1-153P14.5, PRPF6, and PPP3R1 - to our knowledge, the latter of which is the first RLS-associated gene directly implicated in dopaminergic pathways. Overall, our findings highlight the power of integrating gene expression data with GWAS to prioritize putative causal genes for functional follow-up studies.


Subject(s)
Gene Expression Profiling , Genetic Predisposition to Disease/genetics , Restless Legs Syndrome/genetics , Case-Control Studies , Gene Expression Profiling/methods , Genes/genetics , Genome-Wide Association Study , Humans
20.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32431803

ABSTRACT

Over the past decade, exome sequencing (ES) has allowed significant advancements to the field of disease research. By targeting the protein-coding regions of the genome, ES combines the depth of knowledge on protein-altering variants with high-throughput data generation and ease of analysis. New discoveries continue to be made using ES, and medical science has benefitted both theoretically and clinically from its continued use. In this review, we describe recent advances and successes of ES in disease research. Through selected examples of recent publications, we explore how ES continues to be a valuable tool to find variants that might explain disease etiology or provide insight into the biology underlying the disease. We then discuss shortcomings of ES in terms of variant discoveries made by other sequencing technologies that would be missed because of the scope and techniques of ES. We conclude with a brief outlook on the future of ES, suggesting that although newer and more thorough sequencing methods will soon supplant ES, its results will continue to be useful for disease research.


Subject(s)
Exome , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...