Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Nat Metab ; 5(12): 2131-2147, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957387

ABSTRACT

Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Cell Proliferation , Proline , Glutamates
2.
Nat Cell Biol ; 25(2): 285-297, 2023 02.
Article in English | MEDLINE | ID: mdl-36658220

ABSTRACT

Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.


Subject(s)
Sarcoma, Ewing , Child , Humans , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins c-ets/genetics , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics
3.
Proc Natl Acad Sci U S A ; 119(34): e2201040119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969752

ABSTRACT

Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.


Subject(s)
Ants , Animals , Ants/genetics , Hybridization, Genetic , Phenotype
4.
Nat Cancer ; 3(8): 976-993, 2022 08.
Article in English | MEDLINE | ID: mdl-35817829

ABSTRACT

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Subject(s)
Gangliosides , Neuroblastoma , Antibodies, Monoclonal , Child , Humans , Immunotherapy , Neoplasm Recurrence, Local/chemically induced , Neuroblastoma/drug therapy
5.
J Chem Ecol ; 48(2): 109-120, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34850312

ABSTRACT

Ants use chemical signals to communicate for various purposes related to colony function. Social organization in the red imported fire ant, Solenopsis invicta, is determined by the Sb supergene, with colonies of the monogyne (single-queen) form lacking the element and colonies of the polygyne (multiple-queen) form possessing it. Polygyne workers accept new reproductive queens in their nest, but only those carrying Sb; young winged queens lacking this genetic element are executed as they mature sexually in their natal nest or as they attempt to enter a foreign nest to initiate reproduction after mating and shedding their wings. It has been suggested that queen supergene genotype status is signaled to workers by unsaturated cuticular hydrocarbons, while queen reproductive status is signaled by piperidines (venom alkaloids). We used high-throughput behavioral assays to study worker acceptance of paper dummies dosed with fractions of extracts of polygyne queens, or blends of synthetic counterparts of queen cuticular compounds. We show that the queen supergene pheromone comprises a blend of monoene and diene unsaturated hydrocarbons. Our assays also reveal that unsaturated hydrocarbons elicit discrimination by polygyne workers only when associated with additional compounds that signal queen fertility. This synergistic effect was obtained with a polar fraction of queen extracts, but not by the piperidine alkaloids, suggesting that the chemical(s) indicating queen reproductive status are compounds more polar than cuticular hydrocarbons but are not the piperidine alkaloids. Our results advance understanding of the role of chemical signaling that is central to the regulation of social organization in an important invasive pest and model ant species.


Subject(s)
Ants , Animals , Ants/physiology , Genotype , Humans , Pheromones , Reproduction , Social Behavior
6.
Clin Cancer Res ; 27(17): 4883-4897, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34168046

ABSTRACT

PURPOSE: While chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC), identifying and managing chemoresistant tumors has proven elusive. We sought to discover hallmarks and therapeutically actionable features of refractory TNBC through molecular analysis of primary chemoresistant TNBC specimens. EXPERIMENTAL DESIGN: We performed transcriptional profiling of tumors from a phase II clinical trial of platinum chemotherapy for advanced TNBC (TBCRC-009), revealing a gene expression signature that identified de novo chemorefractory tumors. We then employed pharmacogenomic data mining, proteomic and other molecular studies to define the therapeutic vulnerabilities of these tumors. RESULTS: We reveal the RAS-GTPase-activating protein (RAS-GAP) RASAL2 as an upregulated factor that mediates chemotherapy resistance but also an exquisite collateral sensitivity to combination MAP kinase kinase (MEK1/2) and EGFR inhibitors in TNBC. Mechanistically, RASAL2 GAP activity is required to confer kinase inhibitor sensitivity, as RASAL2-high TNBCs sustain basal RAS activity through suppression of negative feedback regulators SPRY1/2, together with EGFR upregulation. Consequently, RASAL2 expression results in failed feedback compensation upon co-inhibition of MEK1/2 and EGFR that induces synergistic apoptosis in vitro and in vivo. In patients with TNBC, high RASAL2 levels predict clinical chemotherapy response and long-term outcomes, and are associated via direct transcriptional regulation with activated oncogenic Yes-Associated Protein (YAP). Accordingly, chemorefractory patient-derived TNBC models exhibit YAP activation, high RASAL2 expression, and tumor regression in response to MEK/EGFR inhibitor combinations despite well-tolerated intermittent dosing. CONCLUSIONS: These findings identify RASAL2 as a mediator of TNBC chemoresistance that rewires MAPK feedback and cross-talk to confer profound collateral sensitivity to combination MEK1/2 and EGFR inhibitors.


Subject(s)
Drug Resistance, Neoplasm , GTPase-Activating Proteins/physiology , Mitogen-Activated Protein Kinase Kinases/physiology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , ErbB Receptors/physiology , Female , Humans
7.
Nat Metab ; 3(2): 182-195, 2021 02.
Article in English | MEDLINE | ID: mdl-33619381

ABSTRACT

Head and neck squamous cell carcinoma (SCC) remains among the most aggressive human cancers. Tumour progression and aggressiveness in SCC are largely driven by tumour-propagating cells (TPCs). Aerobic glycolysis, also known as the Warburg effect, is a characteristic of many cancers; however, whether this adaptation is functionally important in SCC, and at which stage, remains poorly understood. Here, we show that the NAD+-dependent histone deacetylase sirtuin 6 is a robust tumour suppressor in SCC, acting as a modulator of glycolysis in these tumours. Remarkably, rather than a late adaptation, we find enhanced glycolysis specifically in TPCs. More importantly, using single-cell RNA sequencing of TPCs, we identify a subset of TPCs with higher glycolysis and enhanced pentose phosphate pathway and glutathione metabolism, characteristics that are strongly associated with a better antioxidant response. Together, our studies uncover enhanced glycolysis as a main driver in SCC, and, more importantly, identify a subset of TPCs as the cell of origin for the Warburg effect, defining metabolism as a key feature of intra-tumour heterogeneity.


Subject(s)
Glycolysis , Head and Neck Neoplasms/pathology , Neoplastic Stem Cells/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Antioxidants/metabolism , Disease Progression , Glutathione/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pentose Phosphate Pathway , RNA, Neoplasm/genetics , Single-Cell Analysis , Sirtuins/genetics , Sirtuins/metabolism , Xenograft Model Antitumor Assays
8.
Mol Ecol ; 29(19): 3622-3636, 2020 10.
Article in English | MEDLINE | ID: mdl-32749006

ABSTRACT

The fire ant Solenopsis invicta exists in two alternate social forms: monogyne nests contain a single reproductive queen and polygyne nests contain multiple reproductive queens. This colony-level social polymorphism corresponds with individual differences in queen physiology, queen dispersal patterns and worker discrimination behaviours, all evidently regulated by an inversion-based supergene that spans more than 13 Mb of a "social chromosome," contains over 400 protein-coding genes and rarely undergoes recombination. The specific mechanisms by which this supergene influences expression of the many distinctive features that characterize the alternate forms remain almost wholly unknown. To advance our understanding of these mechanisms, we explore the effects of social chromosome genotype and natal colony social form on gene expression in queens sampled as they embarked on nuptial flights, using RNA-sequencing of brains and ovaries. We observe a large effect of natal social form, that is, of the social/developmental environment, on gene expression profiles, with similarly substantial effects of genotype, including: (a) supergene-associated gene upregulation, (b) allele-specific expression and (c) pronounced extra-supergene trans-regulatory effects. These findings, along with observed spatial variation in differential and allele-specific expression within the supergene region, highlight the complex gene regulatory landscape that emerged following divergence of the inversion-mediated Sb haplotype from its homologue, which presumably largely retained the ancestral gene order. The distinctive supergene-associated gene expression trajectories we document at the onset of a queen's reproductive life expand the known record of relevant molecular correlates of a complex social polymorphism and point to putative genetic factors underpinning the alternate social syndromes.


Subject(s)
Ants , Alleles , Animals , Ants/genetics , Multifactorial Inheritance , Polymorphism, Genetic , Social Behavior
9.
Proc Natl Acad Sci U S A ; 117(28): 16516-16526, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601179

ABSTRACT

LIN28B is highly expressed in neuroblastoma and promotes tumorigenesis, at least, in part, through inhibition of let-7 microRNA biogenesis. Here, we report that overexpression of either wild-type (WT) LIN28B or a LIN28B mutant that is unable to inhibit let-7 processing increases the penetrance of MYCN-induced neuroblastoma, potentiates the invasion and migration of transformed sympathetic neuroblasts, and drives distant metastases in vivo. Genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and coimmunoprecipitation experiments show that LIN28B binds active gene promoters in neuroblastoma cells through protein-protein interaction with the sequence-specific zinc-finger transcription factor ZNF143 and activates the expression of downstream targets, including transcription factors forming the adrenergic core regulatory circuitry that controls the malignant cell state in neuroblastoma as well as GSK3B and L1CAM that are involved in neuronal cell adhesion and migration. These findings reveal an unexpected let-7-independent function of LIN28B in transcriptional regulation during neuroblastoma pathogenesis.


Subject(s)
N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , Animals, Genetically Modified , Cell Movement , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/physiopathology , Protein Binding , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Zebrafish
10.
Dis Model Mech ; 13(8)2020 08 27.
Article in English | MEDLINE | ID: mdl-32651197

ABSTRACT

Polycomb repressive complex 2 (PRC2) is an epigenetic regulator of gene expression that possesses histone methyltransferase activity. PRC2 trimethylates lysine 27 of histone H3 proteins (H3K27me3) as a chromatin modification associated with repressed transcription of genes frequently involved in cell proliferation or self-renewal. Loss-of-function mutations in the PRC2 core subunit SUZ12 have been identified in a variety of tumors, including malignant peripheral nerve sheath tumors (MPNSTs). To determine the consequences of SUZ12 loss in the pathogenesis of MPNST and other cancers, we used CRISPR-Cas9 to disrupt the open reading frame of each of two orthologous suz12 genes in zebrafish: suz12a and suz12b We generated these knockout alleles in the germline of our previously described p53 (also known as tp53)- and nf1-deficient zebrafish model of MPNSTs. Loss of suz12 significantly accelerated the onset and increased the penetrance of MPNSTs compared to that in control zebrafish. Moreover, in suz12-deficient zebrafish, we detected additional types of tumors besides MPNSTs, including leukemia with histological characteristics of lymphoid malignancies, soft tissue sarcoma and pancreatic adenocarcinoma, which were not detected in p53/nf1-deficient control fish, and are also contained in the human spectrum of SUZ12-deficient malignancies identified in the AACR Genie database. The suz12-knockout tumors displayed reduced or abolished H3K27me3 epigenetic marks and upregulation of gene sets reported to be targeted by PRC2. Thus, these zebrafish lines with inactivation of suz12 in combination with loss of p53/nf1 provide a model of human MPNSTs and multiple other tumor types, which will be useful for mechanistic studies of molecular pathogenesis and targeted therapy with small molecule inhibitors.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Silencing , Neurofibromin 1/genetics , Neurofibrosarcoma/genetics , Tumor Suppressor Protein p53/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Animals, Genetically Modified , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Neurofibromin 1/deficiency , Neurofibrosarcoma/drug therapy , Neurofibrosarcoma/metabolism , Neurofibrosarcoma/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Sarcoma/genetics , Sarcoma/metabolism , Sarcoma/pathology , Signal Transduction , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Soft Tissue Neoplasms/pathology , Tumor Suppressor Protein p53/deficiency , Zebrafish/metabolism , Zebrafish Proteins/deficiency
11.
Genes Dev ; 34(11-12): 751-766, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32273287

ABSTRACT

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


Subject(s)
Lipid Metabolism/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , ras Proteins/genetics , Animals , Cell Line, Tumor , Disease Progression , Fatty Acids/metabolism , HEK293 Cells , Humans , Mice , Mice, SCID , Mutation , Oxidation-Reduction
12.
Sci Adv ; 6(5): eaay2611, 2020 01.
Article in English | MEDLINE | ID: mdl-32064343

ABSTRACT

Women harboring heterozygous germline mutations of BRCA2 have a 50 to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. To reveal early steps in BRCA2-associated carcinogenesis, we analyzed sorted cell populations from freshly-isolated, non-cancerous breast tissues of BRCA2 mutation carriers and matched controls. Single-cell whole-genome sequencing demonstrates that >25% of BRCA2 carrier (BRCA2mut/+ ) luminal progenitor (LP) cells exhibit sub-chromosomal copy number variations, which are rarely observed in non-carriers. Correspondingly, primary BRCA2mut/+ breast epithelia exhibit DNA damage together with attenuated replication checkpoint and apoptotic responses, and an age-associated expansion of the LP compartment. We provide evidence that these phenotypes do not require loss of the wild-type BRCA2 allele. Collectively, our findings suggest that BRCA2 haploinsufficiency and associated DNA damage precede histologic abnormalities in vivo. Using these hallmarks of cancer predisposition will yield unanticipated opportunities for improved risk assessment and prevention strategies in high-risk patients.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Adult , Aneuploidy , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Copy Number Variations/genetics , DNA Damage/genetics , Female , Germ-Line Mutation/genetics , Heterozygote , Humans , Middle Aged , Single-Cell Analysis
13.
Nat Ecol Evol ; 4(2): 240-249, 2020 02.
Article in English | MEDLINE | ID: mdl-31959939

ABSTRACT

Supergenes are clusters of linked genetic loci that jointly affect the expression of complex phenotypes, such as social organization. Little is known about the origin and evolution of these intriguing genomic elements. Here we analyse whole-genome sequences of males from native populations of six fire ant species and show that variation in social organization is under the control of a novel supergene haplotype (termed Sb), which evolved by sequential incorporation of three inversions spanning half of a 'social chromosome'. Two of the inversions interrupt protein-coding genes, resulting in the increased expression of one gene and modest truncation in the primary protein structure of another. All six socially polymorphic species studied harbour the same three inversions, with the single origin of the supergene in their common ancestor inferred by phylogenomic analyses to have occurred half a million years ago. The persistence of Sb along with the ancestral SB haplotype through multiple speciation events provides a striking example of a functionally important trans-species social polymorphism presumably maintained by balancing selection. We found that while recombination between the Sb and SB haplotypes is severely restricted in all species, a low level of gene flux between the haplotypes has occurred following the appearance of the inversions, potentially mitigating the evolutionary degeneration expected at genomic regions that cannot freely recombine. These results provide a detailed picture of the structural genomic innovations involved in the formation of a supergene controlling a complex social phenotype.


Subject(s)
Ants , Animals , Chromosome Inversion , Male , Phenotype , Phylogeny , Polymorphism, Genetic
14.
Cancer Cell ; 36(6): 660-673.e11, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31821784

ABSTRACT

Inhibition of the Menin (MEN1) and MLL (MLL1, KMT2A) interaction is a potential therapeutic strategy for MLL-rearranged (MLL-r) leukemia. Structure-based design yielded the potent, highly selective, and orally bioavailable small-molecule inhibitor VTP50469. Cell lines carrying MLL rearrangements were selectively responsive to VTP50469. VTP50469 displaced Menin from protein complexes and inhibited chromatin occupancy of MLL at select genes. Loss of MLL binding led to changes in gene expression, differentiation, and apoptosis. Patient-derived xenograft (PDX) models derived from patients with either MLL-r acute myeloid leukemia or MLL-r acute lymphoblastic leukemia (ALL) showed dramatic reductions of leukemia burden when treated with VTP50469. Multiple mice engrafted with MLL-r ALL remained disease free for more than 1 year after treatment. These data support rapid translation of this approach to clinical trials.


Subject(s)
Chromatin/drug effects , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins/drug effects , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin/genetics , Gene Expression Regulation, Leukemic/genetics , Gene Rearrangement/drug effects , Gene Rearrangement/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Proto-Oncogene Proteins/genetics , Transcription Factors/drug effects , Transcription Factors/genetics
15.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31399344

ABSTRACT

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Subject(s)
Promoter Regions, Genetic , RNA Polymerase II/metabolism , Sirtuins/metabolism , Transcription Elongation, Genetic , Acetylation , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Gene Deletion , Histones/genetics , Histones/metabolism , Humans , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/genetics , Sirtuins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
16.
PLoS Genet ; 15(4): e1008039, 2019 04.
Article in English | MEDLINE | ID: mdl-30970016

ABSTRACT

The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development.


Subject(s)
Sarcoma, Experimental/etiology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein/deficiency , X-linked Nuclear Protein/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Carcinogenesis/genetics , Carcinogenesis/metabolism , Disease Models, Animal , Erythropoiesis , Female , Gene Knockout Techniques , Globins/genetics , Humans , Loss of Function Mutation , Male , Neurofibromin 1/deficiency , Neurofibromin 1/genetics , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Telomere Homeostasis/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
17.
Curr Biol ; 29(8): 1394-1400.e4, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30982653

ABSTRACT

Ants exhibit a striking diversity of reproductive systems, varying in traits such as the number of reproductives per colony [1], the mode of daughter production (sexual or asexual) [2], and the mode of caste determination (genetic or environmental) [3]. Species employing mixed reproductive systems present a unique opportunity to explore the causes and consequences of alternative breeding strategies. Mixed reproductive systems in ants include social polymorphism in colony queen number, whereby single-queen (monogyne) and multiple-queen (polygyne) colonies co-occur within species [4-7], and facultative asexuality, in which female offspring may be produced sexually or asexually within colonies [8-13]. Here, we document a remarkable confluence of multiple mixed reproductive systems in the tropical fire ant, Solenopsis geminata, in a population with three important features: (1) polygyne colonies produce workers sexually but queens asexually, whereas monogyne colonies produce both castes sexually; (2) polygyne queens mate with monogyne males to produce workers, but monogyne queens do not mate with polygyne males; and (3) different asexual/polygyne lineages evidently were founded separately by genetically distinct founder queens, which appear to have originated from the same neighboring monogyne population. Multiple asexual/polygyne genomes are transmitted undiluted in this system, but sterile workers produced with sperm from a sexually-reproducing/monogyne population are necessary for the persistence of these lineages. The intersection of social polymorphism, facultative asexuality, and genetic caste determination marks this population of S. geminata as an embodiment of the diversity of ant reproductive systems and suggests previously unknown connections between these phenomena.


Subject(s)
Ants/physiology , Biological Evolution , Animals , Female , Male , Reproduction , Social Behavior
18.
BMC Genet ; 19(1): 101, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30404617

ABSTRACT

BACKGROUND: The Sb supergene in the fire ant Solenopsis invicta determines the form of colony social organization, with colonies whose inhabitants bear the element containing multiple reproductive queens and colonies lacking it containing only a single queen. Several features of this supergene - including suppressed recombination, presence of deleterious mutations, association with a large centromere, and "green-beard" behavior - suggest that it may be a selfish genetic element that engages in transmission ratio distortion (TRD), defined as significant departures in progeny allele frequencies from Mendelian inheritance ratios. We tested this possibility by surveying segregation ratios in embryo progenies of 101 queens of the "polygyne" social form (3512 embryos) using three supergene-linked markers and twelve markers outside the supergene. RESULTS: Significant departures from Mendelian ratios were observed at the supergene loci in 3-5 times more progenies than expected in the absence of TRD and than found, on average, among non-supergene loci. Also, supergene loci displayed the greatest mean deviations from Mendelian ratios among all study loci, although these typically were modest. A surprising feature of the observed inter-progeny variation in TRD was that significant deviations involved not only excesses of supergene alleles but also similarly frequent excesses of the alternate alleles on the homologous chromosome. As expected given the common occurrence of such "drive reversal" in this system, alleles associated with the supergene gain no consistent transmission advantage over their alternate alleles at the population level. Finally, we observed low levels of recombination and incomplete gametic disequilibrium across the supergene, including between adjacent markers within a single inversion. CONCLUSIONS: Our data confirm the prediction that the Sb supergene is a selfish genetic element capable of biasing its own transmission during reproduction, yet counterselection for suppressor loci evidently has produced an evolutionary stalemate in TRD between the variant homologous haplotypes on the "social chromosome". Evidence implicates prezygotic segregation distortion as responsible for the TRD we document, with "true" meiotic drive the most likely mechanism. Low levels of recombination and incomplete gametic disequilibrium across the supergene suggest that selection does not preserve a single uniform supergene haplotype responsible for inducing polygyny.


Subject(s)
Ants/genetics , Chromosome Segregation , Repetitive Sequences, Nucleic Acid/genetics , Animals , Ants/growth & development , Carrier Proteins/genetics , Embryo, Nonmammalian/metabolism , Female , Gene Frequency , Genotype , Insect Proteins/genetics , Linkage Disequilibrium , Male , Recombination, Genetic
19.
Blood Adv ; 2(19): 2478-2490, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30266823

ABSTRACT

Infant B-cell acute lymphoblastic leukemias (B-ALLs) that harbor MLL-AF4 rearrangements are associated with a poor prognosis. One important obstacle to progress for this patient population is the lack of immunocompetent models that faithfully recapitulate the short latency and aggressiveness of this disease. Recent whole-genome sequencing of MLL-AF4 B-ALL samples revealed a high frequency of activating RAS mutations; however, single-agent targeting of downstream effectors of the RAS pathway in these mutated MLL-r B-ALLs has demonstrated limited and nondurable antileukemic effects. Here, we demonstrate that the expression of activating mutant N-Ras G12D cooperates with Mll-Af4 to generate a highly aggressive serially transplantable B-ALL in mice. We used our novel mouse model to test the sensitivity of Mll-Af4/N-Ras G12D leukemia to small molecule inhibitors and found potent and synergistic preclinical efficacy of dual targeting of the Mek and Atr pathways in mouse- and patient-derived xenografts with both mutations in vivo, suggesting this combination as an attractive therapeutic opportunity that might be used to treat patients with these mutations. Our studies indicate that this mouse model of Mll-Af4/N-Ras B-ALL is a powerful tool to explore the molecular and genetic pathogenesis of this disease subtype, as well as a preclinical discovery platform for novel therapeutic strategies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Genes, ras , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcriptional Activation , Animals , Apoptosis/genetics , Cell Cycle/genetics , Disease Models, Animal , Disease Progression , Gene Expression , Genetic Vectors/genetics , Humans , Mice , Mice, Transgenic , Mutation , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Retroviridae/genetics , Signal Transduction
20.
Mol Cancer Ther ; 17(1): 254-263, 2018 01.
Article in English | MEDLINE | ID: mdl-29054988

ABSTRACT

Human tumor growth depends on rapidly dividing cancer cells driving population expansion. Even advanced tumors, however, contain slowly proliferating cancer cells for reasons that remain unclear. Here, we selectively disrupt the ability of rapidly proliferating cancer cells to spawn AKT1low daughter cells that are rare, slowly proliferating, tumor-initiating, and chemotherapy-resistant, using ß1-integrin activation and the AKT1-E17K-mutant oncoprotein as experimental tools in vivo Surprisingly, we find that selective depletion of AKT1low slow proliferators actually reduces the growth of a molecularly diverse panel of human cancer cell xenograft models without globally altering cell proliferation or survival in vivo Moreover, we find that unusual cancer patients with AKT1-E17K-mutant solid tumors also fail to produce AKT1low quiescent cancer cells and that this correlates with significantly prolonged survival after adjuvant treatment compared with other patients. These findings support a model whereby human solid tumor growth depends on not only rapidly proliferating cancer cells but also on the continuous production of AKT1low slow proliferators. Mol Cancer Ther; 17(1); 254-63. ©2017 AACR.


Subject(s)
Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Cell Transformation, Neoplastic , Female , HCT116 Cells , Heterografts , Humans , MCF-7 Cells , Mice , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...