Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Drug Monit ; 39(3): 235-242, 2017 06.
Article in English | MEDLINE | ID: mdl-28490046

ABSTRACT

BACKGROUND: Gemcitabine (2',2'-difluoro-2'-deoxycytidine) is a nucleoside analog used as a single agent and in combination regimens for the treatment of a variety of solid tumors. Several studies have shown a relationship between gemcitabine peak plasma concentration (Cmax) and hematological toxicity. An immunoassay for gemcitabine in plasma was developed and validated to facilitate therapeutic drug monitoring (TDM) by providing an economical, robust method for automated chemistry analyzers. METHODS: A monoclonal antibody was coated on nanoparticles to develop a homogenous agglutination inhibition assay. To prevent ex vivo degradation of gemcitabine in blood, tetrahydrouridine was used as a sample stabilizer. Validation was conducted for precision, recovery, cross-reactivity, and linearity on a Beckman Coulter AU480. Verification was performed on an AU5800 in a hospital laboratory. A method comparison was performed with (LC-MS/MS) liquid chromatography tandem mass spectrometry using clinical samples. Selectivity was demonstrated by testing cross-reactivity of the major metabolite, 2',2'-difluorodeoxyuridine. RESULTS: Coefficients of variation for repeatability and within-laboratory precision were <8%. The deviation between measured and assigned values was <3%. Linear range was from 0.40 to 33.02 µ/mL (1.5-125.5 µM). Correlation with validated LC-MS/MS methods was R = 0.977. The assay was specific for gemcitabine: there was no cross-reactivity to 2',2'-difluorodeoxyuridine, chemotherapeutics, concomitant, or common medications tested. Tetrahydrouridine was packaged in single-use syringes. Gemcitabine stability in whole blood was extended to 8 hours (at room temperature) and in plasma to 8 days (2-8°C). CONCLUSIONS: The assay demonstrated the selectivity, test range, precision, and linearity to perform reliable measurements of gemcitabine in plasma. The addition of stabilizer improved the sample handling. Using general clinical chemistry analyzers, gemcitabine could be measured for TDM.


Subject(s)
Deoxycytidine/analogs & derivatives , Plasma/chemistry , Antibodies, Monoclonal/chemistry , Chromatography, High Pressure Liquid/methods , Deoxycytidine/blood , Drug Monitoring/methods , Humans , Immunoassay/methods , Limit of Detection , Nanoparticles/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/methods , Gemcitabine
2.
J Phys Chem A ; 117(6): 1030-4, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-22559292

ABSTRACT

Reported herein are strong-field ionization studies of small, neutral Pd(x)O(y) and Zr(x)O(y) clusters made using ultrafast laser pulses (~100 fs) centered at 624 nm. An enhancement in ionization of nearly 1.5 orders of magnitude lower in laser intensity than predicted from literature values is observed for both systems due to clustering. The change in enhancement upon addition of carbon monoxide at different pressures was also studied. Enhancement of high charge states of palladium was found to decrease upon CO addition, whereas in the case of the zirconium system, high charge states of zirconium were observed to increase. Pd and ZrO showed similar reactivity trends with CO and were found to have similar reactivity ratios in accord with their isovalent nature.


Subject(s)
Carbon Monoxide/chemistry , Palladium/chemistry , Zirconium/chemistry
3.
Chemphyschem ; 14(4): 771-6, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23108929

ABSTRACT

Growth and ionization patterns of small silicon clusters are studied using ultrafast pulses centered at 624 nm by varying the metal electron source for cluster formation using group 10 transition metals. The silicon-cluster size was observed to change as the electron source was varied from Pd

4.
J Chem Phys ; 137(19): 194312, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23181311

ABSTRACT

Molecules/clusters have been shown to undergo an enhancement in ionization under ultrafast laser pulses. This enhancement results in the lowering of the laser intensity required to observe ion signal from higher atomic charge states resulting from Coulomb explosion of clusters. Here, we explore the effect of using an early-group transition metal as an electron source in the formation of small silicon clusters on the observed enhancement in ionization. Intensity selective scanning is used to measure the onset of ion signal for the atomic charge states of silicon, germanium, zirconium, and oxygen. Additionally, the kinetic energy released values for the resulting high charge states of silicon are measured and compared to those previously observed using a copper electron source. A significant increase in ionization enhancement is observed upon using zirconium metal, despite a decrease in cluster size. Germanium metal with zirconium is studied for comparison and shows a larger enhancement in ion signal than silicon, indicating that atomic mass may be significant.

5.
J Chem Phys ; 137(8): 084307, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22938233

ABSTRACT

The ionization properties of small group 10 metal oxide clusters are explored using ultrafast pulses centered at 624 nm. Maximum atomic charge states resulting from Coulomb explosion were observed to be Ni(3+), Pd(3+), Pt(5+), and O(2+) species with similar ionization potentials ~30-35 eV. Ion signal as a function of laser intensity of each charge state of Ni, Pd, Pt, and O resulting from Coulomb explosion was mapped and compared to that predicted from semi-classical tunneling theory using sequential ionization potentials to quantify observed enhancements in ionization. The saturation intensity (I(sat)) of each charge state is measured and compared to previous studies on group 5 transition metal oxides. The atomic charge states of nickel showed a large enhancement in ionization compared to palladium and platinum, reflective of the differing bonding properties of each metal with oxygen. Results indicate that nickel oxide clusters undergo a greater extent of ionization enhancement as a result of multiple ionization mechanisms. The ionization enhancement behavior of each metal oxide species is explored herein.

6.
J Phys Chem A ; 116(33): 8530-8, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22830582

ABSTRACT

Clusters exhibit an enhancement in ionization rates under intense, ultrafast laser pulses compared to their molecular/atomic counterparts. Studies of ionization enhancement of weakly bound molecules to clusters have not been previously characterized and quantified. We demonstrate that weakly bound ClO to (H(2)O)(n) (n = 1-12) clusters and weakly bound HCl to (H(2)O)(n) (n = 1-12) clusters produce high atomic charge states of chlorine via Coulomb explosion. Density functional theory (DFT) was used to qualitatively compare the interaction energy of ClO with respect to the number of water molecules as well as HCl with respect to the number of water molecules. The chlorine ion signal intensity for each atomic charge state was observed to be dependent on the molecule-cluster bond strength. The observed ionization enhancement was quantified using semiclassical tunneling theory, and it was found that the Cl(3+-5+) and O(2+) charge states are enhanced in ionization. Possible mechanisms of ionization enhancement are explored for weakly bound chlorine species.

7.
J Chem Phys ; 135(5): 054312, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823705

ABSTRACT

Heterogeneously composed clusters are exposed to intensity resolved, 100 fs laser pulses to reveal the energy requirements for the production of the high charge states of both metal and nonmetal ions. The ionization and fragmentation of group V transition metal oxide clusters are here examined with laser intensities ranging nearly four orders in magnitude (∼3 × 10(11) W/cm(2) to ∼2 × 10(15) W/cm(2)) at 624 nm. The ionization potentials of the metal atoms are measured using both multiphoton ionization and tunneling ionization models. We demonstrate that the intensity selective scanning method can be utilized to measure the low ionization potentials of transition metals (∼7 eV). The high charge states demonstrate an enhancement in ionization that is three orders of magnitude lower in laser intensity than predicted for the atomic counterparts. Finally, the response from the various metals and the oxygen is compared to elucidate the mechanism of enhanced ionization that is observed. Specifically, the sequence of ion appearances demonstrates delocalized electron behavior over the entire cluster.

8.
Phys Chem Chem Phys ; 13(26): 12231-9, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21637869

ABSTRACT

The Coulomb explosion of clusters is known to be an efficient source for producing multiply charged ions through an enhanced ionization process. However, the factors responsible for obtaining these high charge states have not been previously explored in detail and remain poorly understood. By comparing intensity-resolved visible laser excitation experiments with semi-classical theory over a range spanning both multiphoton and tunneling ionization regimes, we reveal the mechanism in which extreme ionization proceeds. Under laser conditions that can only singly ionize individual molecules, ammonia clusters generate ions depleted of all valence electrons. The geometries of the molecular orbitals are revealed to be important in driving the ionization, and can be entirely emptied at the energy requirement for removal of the first electron in the orbital. The results are in accord with non-sequential ionization arising from electrons tunneling from three separate molecular orbitals aided through the ionization ignition mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...