Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cell Biosci ; 14(1): 84, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918813

ABSTRACT

Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.

2.
Cancer Immunol Immunother ; 73(6): 113, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693312

ABSTRACT

Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.


Subject(s)
Breast Neoplasms , Cellular Senescence , Neutrophils , Piperazines , Pyridines , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Cellular Senescence/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Neutrophils/metabolism , Neutrophils/immunology , Neutrophils/drug effects , Cell Line, Tumor , Neutrophil Activation/drug effects , Tumor Microenvironment/drug effects
3.
Front Immunol ; 15: 1373224, 2024.
Article in English | MEDLINE | ID: mdl-38633264

ABSTRACT

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Cystinosis , Kidney Diseases , Animals , Cystine/metabolism , Cystinosis/genetics , Cystinosis/metabolism , Cystinosis/pathology , Kidney/pathology , Kidney Diseases/pathology , RNA, Messenger , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Disease Models, Animal , Mice
4.
Integr Zool ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488179

ABSTRACT

Blister beetles (Coleoptera: Meloidae) are currently subdivided into three subfamilies: Eleticinae (a basal group), Nemognathinae, and Meloinae. These are all characterized by the endogenous production of the defensive terpene cantharidin (CA), whereas the two most derived subfamilies show a hypermetamorphic larval development. Here, we provide novel draft genome assemblies of five species sampled across the three blister beetle subfamilies (Iselma pallidipennis, Stenodera caucasica, Zonitis immaculata, Lydus trimaculatus, and Mylabris variabilis) and performed a comparative analysis with other available Meloidae genomes and the closely-related canthariphilous species (Pyrochroa serraticornis) to disclose adaptations at a molecular level. Our results highlighted the expansion and selection of genes potentially responsible for CA production and metabolism, as well as its mobilization and vesicular compartmentalization. Furthermore, we observed adaptive selection patterns and gain of genes devoted to epigenetic regulation, development, and morphogenesis, possibly related to hypermetamorphosis. We hypothesize that most genetic adaptations occurred to support both CA biosynthesis and hypermetamorphosis, two crucial aspects of Meloidae biology that likely contributed to their evolutionary success.

5.
Biomolecules ; 13(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38136670

ABSTRACT

Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.


Subject(s)
Nanoparticles , Oxidoreductases Acting on CH-NH Group Donors , Polyamine Oxidase , Spermine/metabolism , Static Electricity , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Nanoparticles/chemistry
6.
ERJ Open Res ; 9(4)2023 Jul.
Article in English | MEDLINE | ID: mdl-37389899

ABSTRACT

Background: Prone positioning is routinely used among patients with COVID-19 requiring mechanical ventilation. However, its utility among spontaneously breathing patients is still debated. Methods: In an open-label randomised controlled trial, we enrolled patients hospitalised with mild COVID-19 pneumonia, whose arterial oxygen tension to inspiratory oxygen fraction ratio (PaO2/FIO2) was >200 mmHg and who did not require mechanical ventilation or continuous positive airway pressure at hospital admission. Patients were randomised 1:1 to prone positioning on top of standard of care (intervention group) versus standard of care only (controls). The primary composite outcome included death, mechanical ventilation, continuous positive airway pressure and PaO2/FIO2 <200 mmHg; secondary outcomes were oxygen weaning and hospital discharge. Results: A total of 61 subjects were enrolled, 29 adjudicated to prone positioning and 32 to the control group. By day 28, 24 out of 61 patients (39.3%) met the primary outcome: 16 because of a PaO2/FIO2 ratio <200 mmHg, five because of the need for continuous positive airway pressure and three because of the need for mechanical ventilation. Three patients died. Using an intention-to-treat approach, 15 out of 29 patients in the prone positioning group versus nine out of 32 controls met the primary outcome, corresponding to a significantly higher risk of progression among those randomised to prone positioning (HR 2.38, 95% CI 1.04-5.43; p=0.040). Using an as-treated approach, which included in the intervention group only patients who maintained prone positioning for ≥3 h·day-1, no significant differences were found between the two groups (HR 1.77, 95% CI 0.79-3.94; p=0.165). Also, we did not find any statistically significant difference in terms of time to oxygen weaning or hospital discharge between study arms in any of the analyses conducted. Conclusions: We observed no clinical benefit from prone positioning among spontaneously breathing patients with COVID-19 pneumonia requiring conventional oxygen therapy.

7.
Pharmaceutics ; 15(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37376128

ABSTRACT

The Food and Drug Administration currently approves the combination of hypomethylating agents (HMA), azacytidine or decitabine with venetoclax (VEN) for acute myeloid leukemia (AML) patients aged more than 75 years and for patients unsuitable for intensive chemotherapy. The risk of fungal infection in the early phase of treatment is not negligible; therefore, posaconazole (PCZ) is commonly administered as primary prophylaxis. A drug-drug interaction between VEN and PCZ is well known, but the trend of serum levels of venetoclax when both drugs are overlapped is not clear. In total, 165 plasma samples from 11 elderly AML patients receiving combined treatment with HMA, VEN and PCZ were analyzed by a validated analytical method (high-pressure liquid chromatography-tandem mass spectrometry). Venetoclax trough plasma concentrations were detected during the 3 days of ramp-up as well as on day 7 and day 12 of treatment when the exposure as the area under the plasma concentration-time curve and the accumulation ratio were also calculated. The results were compared with the expected data for 400 mg/dose VEN administered alone-the confirmed high inter-individual variability in pharmacokinetics suggests the need for therapeutic drug monitoring.

8.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232289

ABSTRACT

A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts' cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts' viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.


Subject(s)
Hydrogen Peroxide , Spermidine , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Proliferation , Glutathione Disulfide/metabolism , Hydrogen Peroxide/metabolism , Mice , Myoblasts/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Polyamines/metabolism , Polyamines/pharmacology , Reactive Oxygen Species/metabolism , Spermidine/metabolism , Spermidine/pharmacology
9.
J Clin Med ; 11(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956026

ABSTRACT

Multidrug resistance has become a serious threat for health, particularly in hospital-acquired infections. To improve patients' safety and outcomes while maintaining the efficacy of antimicrobials, complex interventions are needed involving infection control and appropriate pharmacological treatments in antibiotic stewardship programs. We conducted a multicenter pre-post study to assess the impact of a stewardship program in seven Italian intensive care units (ICUs). Each ICU was visited by a multidisciplinary team involving clinicians, microbiologists, pharmacologists, infectious disease specialists, and data scientists. Interventions were targeted according to the characteristics of each unit. The effect of the program was measured with a panel of indicators computed with data from the MargheritaTre electronic health record. The median duration of empirical therapy decreased from 5.6 to 4.6 days and the use of quinolones dropped from 15.3% to 6%, both p < 0.001. The proportion of multi-drug-resistant bacteria (MDR) in ICU-acquired infections fell from 57.7% to 48.8%. ICU mortality and length of stay remained unchanged, indicating that reducing antibiotic administration did not harm patients' safety. This study shows that our stewardship program successfully improved the management of infections. This suggests that policy makers should tackle multidrug resistance with a multidisciplinary approach based on continuous monitoring and personalised interventions.

10.
Biomedicines ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35885061

ABSTRACT

In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.

11.
Biomolecules ; 12(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35883544

ABSTRACT

Protease inhibitors are widely studied since the unrestricted activity of proteases can cause extensive organ lesions. In particular, elastase activity is involved in the pathophysiology of acute lung injury, for example during SARS-CoV-2 infection, while serine proteases and thrombin-like proteases are involved in the development and/or pathology of the nervous system. Natural protease inhibitors have the advantage to be reversible and with few side effects and thus are increasingly considered as new drugs. Kunitz-type protease inhibitors (KTPIs), reported in the venom of various organisms, such as wasps, spiders, scorpions, and snakes, have been studied for their potent anticoagulant activity and widespread protease inhibitor activity. Putative KTPI anticoagulants have been identified in transcriptomic resources obtained for two blister beetle species, Lydus trimaculatus and Mylabris variabilis. The KTPIs of L. trimaculatus and M. variabilis were characterized by combined transcriptomic and bioinformatics methodologies. The full-length mRNA sequences were divided on the base of the sequence of the active sites of the putative proteins. In silico protein structure analyses of each group of translational products show the biochemical features of the active sites and the potential protease targets. Validation of these genes is the first step for considering these molecules as new drugs for use in medicine.


Subject(s)
COVID-19 , Coleoptera , Animals , Coleoptera/genetics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine Proteases
12.
Infez Med ; 30(2): 242-246, 2022.
Article in English | MEDLINE | ID: mdl-35693064

ABSTRACT

Bacillus Calmette-Guerin (BCG) is commonly and safely used as intravesical instillation to treat bladder cancer. Adverse effects are widely described in case report and series with a broad range of clinical presentations known as "BCGitis". Moreover, microbiological identification is often inconclusive leading to diagnostic uncertainty and no standardisation of definitions is available. We retrospectively collected all cases of BCGitis (n=19) after BCG intravesical administration occurred in 2 major Italian hospitals in the last 10 years. Median age was 71.8 years and among comorbidities hypertension affected 60% of patients. The delay in the onset of symptoms was < one week and an inverse correlation was observed between the number of instillations and the time to the onset of symptoms. Moreover, a febrile presentation was the commonest clinical symptom (85%) and an interstitial or micronodular pattern at chest X-ray or CT scan was found positive in about 70% and 90% of cases, respectively. Larger cohorts are needed in order to inform clinically relevant algorythms for this uncommon disease.

13.
Blood ; 140(3): 262-273, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35500103

ABSTRACT

CD8+ T-cell activation has been demonstrated to distinguish patients with primary and infection-associated hemophagocytic lymphohistiocytosis (HLH) from patients with early sepsis. We evaluated the activation profile of CD8+ T cells in patients with various forms of secondary HLH (sHLH), including macrophage activation syndrome (MAS). Peripheral blood mononuclear cells from children with inactive systemic juvenile idiopathic arthritis (sJIA, n = 17), active sJIA (n = 27), MAS in sJIA (n = 14), infection-associated HLH (n = 7), and with other forms of sHLH (n = 9) were analyzed by flow cytometry. Compared with patients with active sJIA, in patients with MAS and sHLH of different origins, beside a significant increase in the frequency of CD38high/HLA-DR+CD8+ T cells, we found a significant increase in the frequency of CD8+ T cells expressing the CD4 antigen (CD4dimCD8+ T cells). These cells expressed high levels of the activation markers CD38 and HLA-DR, suggesting they were a subset of CD38high/HLA-DR+CD8+ T cells, as well as of the activation/exhaustion markers CD25, PD1, CD95, and interferon-γ. The frequency of CD4dimCD8+ T cells strongly correlated with most of the laboratory parameters of MAS severity and with circulating levels of CXCL9 and interleukin-18. These findings were confirmed in a prospective replication cohort in which no expansion of any particular T-cell receptor Vß family in CD3+ T cells of patients with sHLH was found. Finally, frequency of CD4dimCD8+, but not of CD38high/HLA-DR+CD8+ T cells, significantly correlated with a clinical severity score, further supporting the involvement of these cells in MAS/sHLH pathogenesis.


Subject(s)
Arthritis, Juvenile , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Arthritis, Juvenile/complications , Child , Humans , Leukocytes, Mononuclear/pathology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/pathology , Prospective Studies
14.
Front Immunol ; 13: 804401, 2022.
Article in English | MEDLINE | ID: mdl-35154120

ABSTRACT

Haploinsufficiency of A20 (HA20) is an inflammatory disease caused by mutations in the TNFAIP3 gene classically presenting with Behcet's-like disease. A20 acts as an inhibitor of inflammation through its effect on NF-kB pathway. Here we describe four consanguineous patients (three sisters and their mother) with a predominantly autoimmune phenotype, including thyroiditis, type I diabetes, hemolytic anemia and chronic polyarthritis. All patients had recurrent oral ulcers, with only 1 patient presenting also recurrent fever episodes, as a classical autoinflammatory feature. Next generation sequencing identified a novel heterozygous frameshift mutation (p.His577Alafs*95) that causes a premature stop codon in the zinc finger domain of A20, leading to a putative haploinsufficiency of the protein. Functional analyses confirmed the pathogenicity of the mutation. The variant was associated with decreased levels of A20 in blood cells. Accordingly, ex-vivo lipopolysaccharide (LPS)-stimulated patients' peripheral blood mononuclear cells (PBMCs) showed higher levels of p65 NF-kB phosphorylation, as well as increased production of the proinflammatory cytokines IL-1ß, IL-6 and TNF-α. Moreover, in agreement with recent observations, demonstrating a role for A20 in inhibiting STAT1 and IFNγ pathways, markedly higher circulating levels of the two IFNγ-inducible chemokines CXCL9 and CXCL10 were detected in all patients. Supporting the findings of a hyperactivation of IFNγ signaling pathway in HA20 patients, patients' monocytes showed higher levels of STAT1 without stimulation, as well as higher phosphorylated (active) STAT1 levels following IFNγ stimulation. In conclusion, our study show that in the clinical spectrum of HA20 autoimmune features may predominate over autoinflammatory features and demonstrate, from a molecular point of view, the involvement of A20 in modulating not only the NF-kB, but also the IFNγ pathway.


Subject(s)
Autoimmune Diseases/diagnosis , Autoimmune Diseases/etiology , Autoimmunity/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Alleles , Family , Genotype , Humans , Phenotype
16.
PLoS One ; 16(12): e0261899, 2021.
Article in English | MEDLINE | ID: mdl-34972180

ABSTRACT

BACKGROUND: Mild anemia is a frequent although often overlooked finding in old age. Nevertheless, in recent years anemia has been linked to several adverse outcomes in the elderly population. Objective of the study was to investigate the association of mild anemia (hemoglobin concentrations: 10.0-11.9/12.9 g/dL in women/men) with all-cause mortality over 11-15 years and the effect of change in anemia status on mortality in young-old (65-84 years) and old-old (80+ years). METHODS: The Health and Anemia and Monzino 80-plus are two door-to-door, prospective population-based studies that included residents aged 65-plus years in Biella municipality and 80-plus years in Varese province, Italy. No exclusion criteria were used. RESULTS: Among 4,494 young-old and 1,842 old-old, mortality risk over 15/11 years was significantly higher in individuals with mild anemia compared with those without (young-old: fully-adjusted HR: 1.35, 95%CI, 1.15-1.58; old-old: fully-adjusted HR: 1.28, 95%CI, 1.14-1.44). Results were similar in the disease-free subpopulation (age, sex, education, smoking history, and alcohol consumption adjusted HR: 1.54, 95%CI, 1.02-2.34). Both age groups showed a dose-response relationship between anemia severity and mortality (P for trend <0.0001). Mortality risk was significantly associated with chronic disease and chronic kidney disease mild anemia in both age groups, and with vitamin B12/folate deficiency and unexplained mild anemia in young-old. In participants with two hemoglobin determinations, seven-year mortality risk was significantly higher in incident and persistent anemic cases compared to constant non-anemic individuals in both age groups. In participants without anemia at baseline also hemoglobin decline was significantly associated with an increased mortality risk over seven years in both young-old and old-old. Limited to the Monzino 80-plus study, the association remained significant also when the risk was further adjusted also for time-varying covariates and time-varying anemia status over time. CONCLUSIONS: Findings from these two large prospective population-based studies consistently suggest an independent, long-term impact of mild anemia on survival at older ages.


Subject(s)
Anemia , Aged , Aged, 80 and over , Hemoglobins , Humans , Middle Aged , Prospective Studies
17.
Front Oncol ; 11: 726637, 2021.
Article in English | MEDLINE | ID: mdl-34540694

ABSTRACT

Acute leukemia of ambiguous lineage (ALAL) is a rare type of leukemia and represents an unmet clinical need. In fact, due to heterogeneity, substantial rarity and absence of clinical trials, there are no therapeutic guidelines available. We investigated the genetic basis of 10 cases of ALAL diagnosed at our centre from 2008 and 2020, through a targeted myeloid and lymphoid sequencing approach. We show that this rare group of acute leukemias is enriched in myeloid-gene mutations. In particular we found that RUNX1 mutations, which have been found double mutated in 40% of patients and tend to involve both alleles, are associated with an undifferentiated phenotype and with lineage ambiguity. Furthermore, because this feature is typical of acute myeloid leukemia with minimal differentiation, we believe that our data strengthen the idea that acute leukemia with ambiguous lineage, especially those with an undifferentiated phenotype, might be genetically more closer to acute myeloid leukemia rather than acute lymphoblastic leukemia. These data enrich the knowledge on the genetic basis of ALAL and could have clinical implications as an acute myeloid leukemia (AML) - oriented chemotherapeutic approach might be more appropriate.

18.
HIV Med ; 22(9): 860-866, 2021 10.
Article in English | MEDLINE | ID: mdl-34293254

ABSTRACT

OBJECTIVES: The aim of the present study was too investigate prevalence and persistence of human papilloma virus (HPV) and cytological abnormalities (CAs) in the anal swabs of people living with HIV (PLWH): men who have sex with men (MSM), men who have sex with women (MSW) and women (W). METHODS: Between March 2010 and January 2019, an anal swab for cytological and HPV genotyping tests was offered to all PLWH attending our clinic. Logistic regression analysis was conducted to identify predictors of infection. RESULTS: In all, 354 PLWH were screened: 174 MSM, 90 MSW and 61 W. Prevalence of at least one high-risk (HR) HPV was higher in MSM (91%) and W (85%) than in MSW (77%) (P < 0.05). Cytological abnormalities were found in 21.1% of the entire population. At multivariable regression analysis a lower risk for HPV infection was found for W than for MSM [odds ratio = 0.24 (95% confidence interval: 0.115-0.513)] and for MSW than for MSM [0.37 (0.180-0.773)] and there was a significantly higher risk of CAs in PLWH with HPV 16 and 18 [3.3 (1.04-10.49)]. A total of 175 PLWH (103 MSM, 33 MSW and 26 W) had at least one follow-up visit (T1) after a median (interquartile range) follow-up of 3.6 (2.1-5.7) years. The acquisition rate of HR-HPV was high, with 66.7% of PLWH negative for HR-HPV at T0 who became positive at T1 (P < 0.001). The prevalence of CAs was stable (20.6%). A significant association between CAs at T1 and persistence of HPV-16 and/or 18 was found (P < 0.05). CONCLUSIONS: HPV 16 and 18 are associated with the presence and development of CAs irrespective of sexual orientation.


Subject(s)
HIV Infections , Papillomavirus Infections , Sexual and Gender Minorities , Anal Canal , Female , Genotype , HIV Infections/epidemiology , Homosexuality, Male , Human papillomavirus 16/genetics , Humans , Male , Papillomaviridae , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Prevalence , Risk Factors , Sexual Behavior
20.
Blood ; 138(21): 2093-2105, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34125889

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.


Subject(s)
Clonal Hematopoiesis , Mutation , Age Factors , Aged, 80 and over , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/genetics , Coronary Disease/etiology , Coronary Disease/genetics , Female , Humans , Leukemia, Myeloid/etiology , Leukemia, Myeloid/genetics , Male , Myelodysplastic Syndromes/etiology , Myelodysplastic Syndromes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...