Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Mol Ecol Resour ; : e13958, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567648

ABSTRACT

The origin of flight and laryngeal echolocation in bats is likely to have been accompanied by evolutionary changes in other aspects of their sensory biology. Of all sensory modalities in bats, olfaction is perhaps the least well understood. Olfactory receptors (ORs) function in recognizing odour molecules, with crucial roles in evaluating food, as well as in processing social information. Here we compare OR repertoire sizes across taxa and apply a new pipeline that integrates comparative genome data with protein structure modelling and then we employ molecular docking techniques with small molecules to analyse OR functionality based on binding energies. Our results suggest a sharp contraction in odorant recognition of the functional OR repertoire during the origin of bats, consistent with a reduced dependence on olfaction. We also compared bat lineages with contrasting different ecological characteristics and found evidence of differences in OR gene expansion and contraction, and in the composition of ORs with different tuning breadths. The strongest binding energies of ORs in non-echolocating fruit-eating bats were seen to correspond to ester odorants, although we did not detect a quantitative advantage of functional OR repertoires in these bats compared with echolocating insectivorous species. Overall, our findings based on molecular modelling and computational docking suggest that bats have undergone olfactory evolution linked to dietary adaptation. Our results from extant and ancestral bats help to lay the groundwork for targeted experimental functional tests in the future.

2.
Anat Rec (Hoboken) ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37994725

ABSTRACT

Sensory organs must develop alongside the skull within which they are largely encased, and this relationship can manifest as the skull constraining the organs, organs constraining the skull, or organs constraining one another in relative size. How this interplay between sensory organs and the developing skull plays out during the evolution of sensory diversity; however, remains unknown. Here, we examine the developmental sequence of the cochlea, the organ responsible for hearing and echolocation, in species with distinct diet and echolocation types within the ecologically diverse bat super-family Noctilionoidea. We found the size and shape of the cochlea largely correlates with skull size, with exceptions of Pteronotus parnellii, whose high duty cycle echolocation (nearly constant emission of sound pulses during their echolocation process allowing for detailed information gathering, also called constant frequency echolocation) corresponds to a larger cochlear and basal turn, and Monophyllus redmani, a small-bodied nectarivorous bat, for which interactions with other sensory organs restrict cochlea size. Our findings support the existence of developmental constraints, suggesting that both developmental and anatomical factors may act synergistically during the development of sensory systems in noctilionoid bats.

4.
Am Nat ; 202(2): 216-230, 2023 08.
Article in English | MEDLINE | ID: mdl-37531274

ABSTRACT

AbstractWith diverse mechanical and sensory functions, the vertebrate cranium is a complex anatomical structure whose shifts between modularity and integration, especially in mechanical function, have been implicated in adaptive diversification. Yet how mechanical and sensory systems and their functions coevolve, as well as how their interrelationship contributes to phenotypic disparity, remain largely unexplored. To examine the modularity, integration, and evolutionary rates of sensory and mechanical structures within the head, we analyzed hard and soft tissue scans from ecologically diverse bats in the superfamily Noctilionoidea, a clade that ranges from insectivores and carnivores to frugivores and nectarivores. We identified eight regions that evolved in a coordinated fashion, thus recognizable as evolutionary modules: five associated with bite force and three linked to olfactory, visual, and auditory systems. Interrelationships among these modules differ between Neotropical leaf-nosed bats (family Phyllostomidae) and other noctilionoids. Consistent with the hypothesis that dietary transitions begin with changes in the capacity to detect novel food items followed by adaptations to process them, peak rates of sensory module evolution predate those of some mechanical modules. We propose that the coevolution of structures influencing bite force, olfaction, vision, and hearing constituted a structural opportunity that allowed the phyllostomid ancestor to take advantage of existing ecological opportunities and contributed to the clade's remarkable radiation.


Subject(s)
Chiroptera , Animals , Skull , Adaptation, Physiological , Diet , Acclimatization , Phylogeny , Biological Evolution
6.
Sci Adv ; 9(18): eadd0141, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37146151

ABSTRACT

Bats have been identified as natural reservoir hosts of several zoonotic viruses, prompting suggestions that they have unique immunological adaptations. Among bats, Old World fruit bats (Pteropodidae) have been linked to multiple spillovers. To test for lineage-specific molecular adaptations in these bats, we developed a new assembly pipeline to generate a reference-quality genome of the fruit bat Cynopterus sphinx and used this in comparative analyses of 12 bat species, including six pteropodids. Our results reveal that immunity-related genes have higher evolutionary rates in pteropodids than in other bats. Several lineage-specific genetic changes were shared across pteropodids, including the loss of NLRP1, duplications of PGLYRP1 and C5AR2, and amino acid replacements in MyD88. We introduced MyD88 transgenes containing Pteropodidae-specific residues into bat and human cell lines and found evidence of dampened inflammatory responses. By uncovering distinct immune adaptations, our results could help explain why pteropodids are frequently identified as viral hosts.


Subject(s)
Chiroptera , Viruses , Animals , Humans , Chiroptera/genetics , Phylogeny , Evolution, Molecular , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Genome , Viruses/genetics
7.
Proc Biol Sci ; 290(1996): 20230530, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37040807

ABSTRACT

The visual ecology of early mammals remains poorly resolved. Studies of ancestral photopigments suggest an ancient transition from nocturnal to more crepuscular conditions. By contrast, the phenotypic shifts following the split of monotremes and therians-which lost their SWS1 and SWS2 opsins, respectively-are less clear. To address this, we obtained new phenotypic data on the photopigments of extant and ancestral monotremes. We then generated functional data for another vertebrate group that shares the same photopigment repertoire as monotremes: the crocodilians. By characterizing resurrected ancient pigments, we show that the ancestral monotreme underwent a dramatic acceleration in its rhodopsin retinal release rate. Moreover, this change was likely mediated by three residue replacements, two of which also arose on the ancestral branch of crocodilians, which exhibit similarly accelerated retinal release. Despite this parallelism in retinal release, we detected minimal to moderate changes in the spectral tuning of cone visual pigments in these groups. Our results imply that ancestral forms of monotremes and crocodilians independently underwent niche expansion to encompass quickly changing light conditions. This scenario-which accords with reported crepuscular activity in extant monotremes-may help account for their loss of the ultraviolet-sensitive SWS1 pigment but retention of the blue-sensitive SWS2.


Subject(s)
Alligators and Crocodiles , Opsins , Animals , Opsins/genetics , Rhodopsin , Phylogeny , Biological Evolution , Mammals
8.
Mol Phylogenet Evol ; 183: 107784, 2023 06.
Article in English | MEDLINE | ID: mdl-37040825

ABSTRACT

Chromosomal variation among closely related taxa is common in both plants and animals, and can reduce rates of introgression as well as promote reproductive isolation and speciation. In mammals, studies relating introgression to chromosomal variation have tended to focus on a few model systems and typically characterized levels of introgression using small numbers of loci. Here we took a genome-wide approach to examine how introgression rates vary among four closely related horseshoe bats (Rhinolophus pearsoni group) that possess different diploid chromosome numbers (2n = 42, 44, 46, and 60) resulting from Robertsonian (Rb) changes (fissions/fusions). Using a sequence capture we obtained orthologous loci for thousands of nuclear loci, as well as mitogenomes, and performed phylogenetic and population genetic analyses. We found that the taxon with 2n = 60 was the first to diverge in this group, and that the relationships among the three other taxa (2n = 42, 44 and 46) showed discordance across our different analyses. Our results revealed signatures of multiple ancient introgression events between the four taxa, with evidence of mitonuclar discordance in phylogenetic trees and reticulation events in their evolutionary history. Despite this, we found no evidence of recent and/or ongoing introgression between taxa. Overall, our results indicate that the effects of Rb changes on the reduction of introgression are complicated and that these may contribute to reproductive isolation and speciation in concert with other factors (e.g. phenotypic and genic divergence).


Subject(s)
Chiroptera , Animals , Phylogeny , Chiroptera/genetics , DNA, Mitochondrial/genetics , Biological Evolution , Chromosomes
9.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325105

ABSTRACT

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

10.
Evolution ; 76(10): 2347-2360, 2022 10.
Article in English | MEDLINE | ID: mdl-35904467

ABSTRACT

Although evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant visiting from a presumed insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants-a potential ecological constraint on sensory evolution.


Subject(s)
Chiroptera , Receptors, Odorant , Animals , Chiroptera/genetics , Chiroptera/anatomy & histology , Receptors, Odorant/genetics , Phylogeny , Smell , Genome
11.
Horm Behav ; 143: 105196, 2022 07.
Article in English | MEDLINE | ID: mdl-35597054

ABSTRACT

Despite decades of research into the evolutionary drivers of sociality, we know relatively little about the underlying proximate mechanisms. Here we investigate the potential role of prolactin in the highly social naked mole-rat. Naked mole-rats live in large social groups but, only a small number of individuals reproduce. The remaining non-breeders are reproductively suppressed and contribute to burrow maintenance, foraging, and allo-parental care. Prolactin has well-documented links with reproductive timing and parental behaviour, and the discovery that non-breeding naked mole-rats have unusually high prolactin levels has led to the suggestion that prolactin may help maintain naked mole-rat sociality. To test this idea, we investigated whether urinary prolactin was correlated with cooperative behaviour and aggression. We then administered the prolactin-suppressing drug Cabergoline to eight female non-breeders for eight weeks and assessed the physiology and behaviour of the animals relative to controls. Contrary to the mammalian norm, and supporting previous findings for plasma, we found non-breeders had elevated urinary prolactin concentrations that were similar to breeding females. Further, prolactin levels were higher in heavier, socially dominant non-breeders. Urinary prolactin concentrations did not explain variation in working behaviour or patterns of aggression. Furthermore, females receiving Cabergoline did not show any behavioural or hormonal (progesterone) differences, and urinary prolactin did not appear to be suppressed in individuals receiving Cabergoline. While the results add to the relatively limited literature experimentally manipulating prolactin to investigate its role in reproduction and behaviour, they fail to explain why prolactin levels are high in non-breeding naked mole-rats, or how female non-breeding phenotypes are maintained.


Subject(s)
Mole Rats , Prolactin , Animals , Cabergoline , Female , Mole Rats/physiology , Reproduction/physiology , Social Behavior
12.
Mol Ecol ; 31(6): 1892-1906, 2022 03.
Article in English | MEDLINE | ID: mdl-35064726

ABSTRACT

Interaction network structure reflects the ecological mechanisms acting within biological communities, which are affected by environmental conditions. In tropical forests, higher precipitation usually increases fruit production, which may lead frugivores to increase specialization, resulting in more modular and less nested animal-plant networks. In these ecosystems, El Niño is a major driver of precipitation, but we still lack knowledge of how species interactions change under this influence. To understand bat-plant network structure during an extreme El Niño-Southern Oscillation event, we determined the links between plantivorous bat species and the plants they consume by DNA barcoding seeds and pulp in bat faeces. These interactions were recorded in the dry forest and rainforest of Costa Rica, during the dry and the wet seasons of an extreme El Niño year. From these we constructed seasonal and whole-year bat-plant networks and analysed their structures and dissimilarities. In general, networks had low nestedness, had high modularity, and were dominated by one large compartment which included most species and interactions. Contrary to our expectations, networks were less nested and more modular in drier conditions, both in the comparison between forest types and between seasons. We suggest that increased competition, when resources are scarce during drier seasons and habitats, lead to higher resource partitioning among bats and thus higher modularity. Moreover, we have found similar network structures between dry and rainforests during El Niño and non-El Niño years. Finally, most interaction dissimilarity among networks occurred due to interaction rewiring among species, potentially driven by seasonal changes in resource availability.


Subject(s)
Chiroptera , El Nino-Southern Oscillation , Animals , Chiroptera/genetics , Ecosystem , Forests , Seasons , Tropical Climate
13.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34478643

ABSTRACT

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Subject(s)
Chiroptera , Animals , Birds/metabolism , Carbohydrates , Chiroptera/genetics , Energy Metabolism , Glucose/metabolism , Plant Nectar/metabolism , Sugars/metabolism
14.
Front Zool ; 18(1): 42, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488775

ABSTRACT

BACKGROUND: Mitochondrial function involves the interplay between mitochondrial and nuclear genomes. Such mitonuclear interactions can be disrupted by the introgression of mitochondrial DNA between taxa or divergent populations. Previous studies of several model systems (e.g. Drosophila) indicate that the disruption of mitonuclear interactions, termed mitonuclear mismatch, can alter nuclear gene expression, yet few studies have focused on natural populations. RESULTS: Here we study a naturally introgressed population in the secondary contact zone of two subspecies of the intermediate horseshoe bat (Rhinolophus affinis), in which individuals possess either mitonuclear matched or mismatched genotypes. We generated transcriptome data for six tissue types from five mitonuclear matched and five mismatched individuals. Our results revealed strong tissue-specific effects of mitonuclear mismatch on nuclear gene expression with the largest effect seen in pectoral muscle. Moreover, consistent with the hypothesis that genes associated with the response to oxidative stress may be upregulated in mitonuclear mismatched individuals, we identified several such gene candidates, including DNASE1L3, GPx3 and HSPB6 in muscle, and ISG15 and IFI6 in heart. CONCLUSION: Our study reveals how mitonuclear mismatch arising from introgression in natural populations is likely to have fitness consequences. Underlying the processes that maintain mitonuclear discordance is a step forward to understand the role of mitonuclear interactions in population divergence and speciation.

16.
PeerJ ; 9: e11897, 2021.
Article in English | MEDLINE | ID: mdl-34447624

ABSTRACT

Invertebrate-derived DNA (iDNA) sampling in biodiversity surveys is becoming increasingly widespread, with most terrestrial studies relying on DNA derived from the gut contents of blood-feeding invertebrates, such as leeches and mosquitoes. Dung beetles (superfamily Scarabaeoidea) primarily feed on the faecal matter of terrestrial vertebrates and offer several potential benefits over blood-feeding invertebrates as samplers of vertebrate DNA. Importantly, these beetles can be easily captured in large numbers using simple, inexpensive baited traps, are globally distributed, and occur in a wide range of habitats. To build on the few existing studies demonstrating the potential of dung beetles as sources of mammalian DNA, we subjected the large-bodied, Bornean dung beetle (Catharsius renaudpauliani) to a controlled feeding experiment. We analysed DNA from gut contents at different times after feeding using qPCR techniques. Here, we first describe the window of DNA persistence within a dung beetle digestive tract. We found that the ability to successfully amplify cattle DNA decayed over relatively short time periods, with DNA copy number decreasing by two orders of magnitude in just 6 h. In addition, we sampled communities of dung beetles from a lowland tropical rainforest in Sabah, Malaysia, in order to test whether it is possible to identify vertebrate sequences from dung beetle iDNA. We sequenced both the gut contents from large dung beetle species, as well as whole communities of smaller beetles. We successfully identified six mammalian species from our samples, including the bearded pig (Sus barbatus) and the sambar deer (Rusa unicolor)-both vulnerable species on the IUCN red list. Our results represent the first use of dung beetle iDNA to sample Southeast Asian vertebrate fauna, and highlight the potential for dung beetle iDNA to be used in future biodiversity monitoring surveys.

17.
Mol Ecol ; 30(22): 5844-5857, 2021 11.
Article in English | MEDLINE | ID: mdl-34437745

ABSTRACT

Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.


Subject(s)
Chiroptera , Forestry , Animals , Biodiversity , Chiroptera/genetics , Conservation of Natural Resources , Ecosystem , Forests , Trees , Tropical Climate
18.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34450623

ABSTRACT

Lysozyme enzymes provide classic examples of molecular adaptation and parallel evolution, however, nearly all insights to date come from chicken-type (c-type) lysozymes. Goose-type (g-type) lysozymes occur in diverse vertebrates, with multiple independent duplications reported. Most mammals possess two g-type lysozyme genes (Lyg1 and Lyg2), the result of an early duplication, although some lineages are known to have subsequently lost one copy. Here we examine g-type lysozyme evolution across >250 mammals and reveal widespread losses of either Lyg1 or Lyg2 in several divergent taxa across the mammal tree of life. At the same time, we report strong evidence of extensive losses of both gene copies in cetaceans and sirenians, with an additional putative case of parallel loss in the tarsier. To validate these findings, we inspected published short-read data and confirmed the presence of loss of function mutations. Despite these losses, comparisons of selection pressures between intact g- and c-type lysozyme genes showed stronger purifying selection in the former, indicative of conserved function. Although the reasons for the evolutionary loss of g-type lysozymes in fully aquatic mammals are not known, we suggest that this is likely to at least partially relate to their hairlessness. Indeed, although Lyg1 does not show tissue-specific expression, recent studies have linked Lyg2 expression to anagen hair follicle development and hair loss. Such a role for g-type lysozyme would explain why the Lyg2 gene became obsolete when these taxa lost their body hair.


Subject(s)
Evolution, Molecular , Muramidase , Animals , Cetacea/genetics , Mammals/genetics , Mammals/metabolism , Muramidase/genetics , Muramidase/metabolism , Phylogeny
19.
Mol Biol Evol ; 38(12): 5726-5734, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34463769

ABSTRACT

Rhodopsin comprises an opsin attached to a retinal chromophore and is the only visual pigment conferring dim-light vision in vertebrates. On activation by photons, the retinal group becomes detached from the opsin, which is then inactive until it is recharged. Of all vertebrate species, those that dive face unique visual challenges, experiencing rapid decreases in light level and hunting in near darkness. Here, we combine sequence analyses with functional assays to show that the rhodopsin pigments of four divergent lineages of deep-diving vertebrates have undergone convergent increases in their retinal release rate. We compare gene sequences and detect parallel amino acids between penguins and diving mammals and perform mutagenesis to show that a single critical residue fully explains the observed increases in retinal release rate in both the emperor penguin and beaked whale. At the same time, we find that other shared sites have no significant effect on retinal release, implying that convergence does not always signify adaptive significance. We propose that accelerated retinal release confers rapid rhodopsin recharging, enabling the visual systems of diving species to adjust quickly to changing light levels as they descend through the water column. This contrasts with nocturnal species, where adaptation to darkness has been attributed to slower retinal release rates.


Subject(s)
Rhodopsin , Vertebrates , Animals , Darkness , Mammals/metabolism , Retina/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Vertebrates/genetics , Vertebrates/metabolism
20.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426843

ABSTRACT

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Subject(s)
Carbohydrate Metabolism/genetics , Chiroptera/genetics , Diet , Evolution, Molecular , Selection, Genetic , Adaptation, Biological/genetics , Animals , Chiroptera/metabolism , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...