Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
IMA Fungus ; 12(1): 22, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34380577

ABSTRACT

With the change to one scientific name for fungal taxa, generic names typified by species with sexual or asexual morph types are being evaluated to determine which names represent the same genus and thus compete for use. In this paper generic names of the Agaricomycotina (Basidiomycota) were evaluated to determine synonymy based on their type. Forty-seven sets of sexually and asexually typified names were determined to be congeneric and recommendations are made for which generic name to use. In most cases the principle of priority is followed. However, 16 generic names are recommended for use that do not have priority and thus need to be protected: Aleurocystis over Matula; Armillaria over Acurtis and Rhizomorpha; Asterophora over Ugola; Botryobasidium over Acladium, Allescheriella, Alysidium, Haplotrichum, Physospora, and Sporocephalium; Coprinellus over Ozonium; Coprinopsis over Rhacophyllus; Dendrocollybia over Sclerostilbum and Tilachlidiopsis; Diacanthodes over Bornetina; Echinoporia over Echinodia; Neolentinus over Digitellus; Postia over Ptychogaster; Riopa over Sporotrichum; Scytinostroma over Artocreas, Michenera, and Stereofomes; Tulasnella over Hormomyces; Typhula over Sclerotium; and Wolfiporia over Gemmularia and Pachyma. Nine species names are proposed for protection: Botryobasidium aureum, B. conspersum, B. croceum, B. simile, Pellicularia lembosporum (syn. B. lembosporum), Phanerochaete chrysosporium, Polyporus metamorphosus (syn. Riopa metamorphosa), Polyporus mylittae (syn. Laccocephalum mylittae), and Polyporus ptychogaster (syn. Postia ptychogaster). Two families are proposed for protection: Psathyrellaceae and Typhulaceae. Three new species names and 30 new combinations are established, and one lectotype is designated.

2.
IMA Fungus ; 12(1): 11, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33934723

ABSTRACT

It is now a decade since The International Commission on the Taxonomy of Fungi (ICTF) produced an overview of requirements and best practices for describing a new fungal species. In the meantime the International Code of Nomenclature for algae, fungi, and plants (ICNafp) has changed from its former name (the International Code of Botanical Nomenclature) and introduced new formal requirements for valid publication of species scientific names, including the separation of provisions specific to Fungi and organisms treated as fungi in a new Chapter F. Equally transformative have been changes in the data collection, data dissemination, and analytical tools available to mycologists. This paper provides an updated and expanded discussion of current publication requirements along with best practices for the description of new fungal species and publication of new names and for improving accessibility of their associated metadata that have developed over the last 10 years. Additionally, we provide: (1) model papers for different fungal groups and circumstances; (2) a checklist to simplify meeting (i) the requirements of the ICNafp to ensure the effective, valid and legitimate publication of names of new taxa, and (ii) minimally accepted standards for description; and, (3) templates for preparing standardized species descriptions.

3.
Phytopathology ; 111(9): 1500-1508, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33487022

ABSTRACT

Using the correct name for phytopathogenic fungi and oomycetes is essential for communicating knowledge about species and their biology, control, and quarantine as well as for trade and research purposes. However, many plant pathogenic fungi are pleomorphic, meaning they produce different asexual (anamorph) and sexual (teleomorph) morphs in their life cycles. Therefore, more than one name has been applied to different morphs of the same species, which has confused users. The onset of DNA technologies makes it possible to connect different morphs of the same species, resulting in a move to a more natural classification system for fungi in which a single name for a genus and species can now be used. This move to a single nomenclature, coupled with the advent of molecular systematics and the introduction of polythetic taxonomic approaches, has been the main driving force for a reclassification of fungi, including pathogens. Nonetheless, finding the correct name for species remains challenging. In this article we outline a series of steps or considerations to greatly simplify this process and provide links to various online databases and resources to aid in determining the correct name. Additionally, a list of accurate names is provided for the most common genera and species of phytopathogenic fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fungi , Plant Diseases
4.
IMA Fungus ; 9(1): 75-89, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30018873

ABSTRACT

With the change to one scientific name for pleomorphic fungi, generic names typified by sexual and asexual morphs have been evaluated to recommend which name to use when two names represent the same genus and thus compete for use. In this paper, generic names in Pucciniomycotina and Ustilaginomycotina are evaluated based on their type species to determine which names are synonyms. Twenty-one sets of sexually and asexually typified names in Pucciniomycotina and eight sets in Ustilaginomycotina were determined to be congeneric and compete for use. Recommendations are made as to which generic name to use. In most cases the principle of priority is followed. However, eight generic names in the Pucciniomycotina, and none in Ustilaginomycotina, are recommended for protection: Classicula over Naiadella, Gymnosporangium over Roestelia, Helicobasidium over Thanatophytum and Tuberculina, Melampsorella over Peridermium, Milesina over Milesia, Phragmidium over Aregma, Sporobolomyces over Blastoderma and Rhodomyces, and Uromyces over Uredo. In addition, eight new combinations are made: Blastospora juruensis, B. subneurophyla, Cronartium bethelii, C. kurilense, C. sahoanum, C. yamabense, Milesina polypodii, and Prospodium crusculum combs. nov.

5.
Fungal Biol ; 122(2-3): 172-181, 2018.
Article in English | MEDLINE | ID: mdl-29458720

ABSTRACT

Morphology and phylogeny have been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species of fungi is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while also exploring the potential of chemotaxonomy as a robust identification method for Stemphylium. Several species were found to have species-specific metabolites, while other species were distinguishable by a broader metabolic profile rather than specific metabolites. Many previously described metabolites were found to be important for distinguishing species, while some unknown metabolites were also determined to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus.


Subject(s)
Ascomycota/metabolism , Ascomycota/classification , Ascomycota/cytology , Chromatography, High Pressure Liquid , Cluster Analysis , Species Specificity , Terminology as Topic
6.
IMA Fungus ; 8(2): 335-353, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29242779

ABSTRACT

The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of Hypocreales and its many genera have received extensive study in the last two decades, however resolution of competing names in Cordycipitaceae has not yet been addressed. Here we present a molecular phylogenetic investigation of Cordycipitaceae that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, Akanthomyces, Ascopolyporus, Beauveria, Cordyceps, Engyodontium, Gibellula, Hyperdermium, Parengyodontium, and Simplicillium and the rejection of eight generic names, Evlachovaea, Granulomanus, Isaria, Lecanicillium, Microhilum, Phytocordyceps, Synsterigmatocystis, and Torrubiella. Two new generic names, Hevansia and Blackwellomyces, and a new species, Beauveria blattidicola, are described. New combinations are also proposed in the genera Akanthomyces, Beauveria, Blackwellomyces, and Hevansia.

7.
Mycologia ; 109(3): 529-534, 2017.
Article in English | MEDLINE | ID: mdl-28841369

ABSTRACT

"With poetry, the tune is in the words themselves-and once you begin to hear it, it will stay with you." Richard P. Korf, notes to his narration of John Brown's Body.

8.
IMA Fungus ; 7(2): 285-288, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27990335

ABSTRACT

Following the change that eliminated dual naming of sexual and asexual morphs of fungi, generic names of Pezizomycetes have been evaluated to determine which of the competing names should be recommended for use. Evaluation is based on congruence of type species to determine if the names are congeneric and which name is most commonly cited as well as priority. In the Pezizomycetes six pairs of generic names were determined to compete. In all cases the older name, representing the sexual morph, is recommended for use, specifically Caloscypha rather than Geniculodendron, Desmazierella rather than Verticicladium, Miladina rather than Actinosporella, Morchella rather than Costantinella, Sarcoscypha rather than Molliardiomyces, and Trichophaea rather than Dichobotrys.

9.
IMA Fungus ; 7(2): 289-308, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27990336

ABSTRACT

With the change to one scientific name for fungal species, numerous papers have been published with recommendations for use or protection of competing generic names in major groups of ascomycetes. Although genera in each group of fungi were carefully considered, some competing generic names were overlooked. This paper makes recommendations for additional competing genera not considered in previous papers. Chairs of relevant Working Groups of the ICTF were consulted in the development of these recommendations. A number of generic names need protection, specifically Amarenographium over Amarenomyces, Amniculicola over Anguillospora, Balansia over Ephelis, Claviceps over Sphacelia, Drepanopeziza over Gloeosporidiella and Gloeosporium, Golovinomyces over Euoidium, Holwaya over Crinium, Hypocrella over Aschersonia, Labridella over Griphosphaerioma, Metacapnodium over Antennularia, and Neonectria over Cylindrocarpon and Heliscus. The following new combinations are made: Amniculicola longissima, Atichia maunauluana, Diaporthe columnaris, D. liquidambaris, D. longiparaphysata, D. palmicola, D. tersa, Elsinoë bucidae, E.caricae, E. choisyae, E. paeoniae, E. psidii, E. zorniae, Eupelte shoemakeri, Godronia myrtilli, G. raduloides, Sarcinella mirabilis, S. pulchra, Schizothyrium jamaicense, and Trichothallus niger. Finally, one new species name, Diaporthe azadirachte, is introduced to validate an earlier name, and the conservation of Discula with a new type, D. destructiva, is recommended.

10.
IMA Fungus ; 7(1): 1-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27433437

ABSTRACT

In advancing to one scientific name for each fungus species, a number of name changes are required especially for plant-associated fungi. These include species names that are not in the correct genus. For example, the generic name Elsinoë is used for fungi causing scab diseases but a number of these species were described in the asexually typified genus Sphaceloma and must be placed in Elsinoë. In other cases species names were determined to be unrelated to the type species of the genus in which they are currently placed and are placed in a more appropriate genus. For each new name the history, rationale and importance of the name is discussed. The following new combinations are made: Acanthohelicospora aurea, A. scopula, Bifusella ahmadii, Botryobasidium capitatum, B. rubiginosum, Colletotrichum magnum, Crandallia acuminata, C. antarctica, Elsinoë arachadis, E. freyliniae, E. necator, E. perseae, E. poinsettiae, E. punicae, Entyloma gibbum, Harknessia farinosa, Passalora alocasiae, Protoventuria veronicae, Pseudocercosporella ranunculi, Psiloglonium stygium, Ramularia pseudomaculiformis, Seimatosporium tostum, Thielaviopsis radicicola combs. nov., and Venturia effusa.

11.
IMA Fungus ; 7(1): 155-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27433445

ABSTRACT

The order Magnaporthales comprises about 200 species and includes the economically and scientifically important rice blast fungus and the take-all pathogen of cereals, as well as saprotrophs and endophytes. Recent advances in phylogenetic analyses of these fungi resulted in taxonomic revisions. In this paper we list the 28 currently accepted genera in Magnaporthales with their type species and available gene and genome resources. The polyphyletic Magnaporthe 1972 is proposed for suppression, and Pyricularia 1880 and Nakataea 1939 are recommended for protection as the generic names for the rice blast fungus and the rice stem rot fungus, respectively. The rationale for the recommended names is also provided. These recommendations are made by the Pyricularia/Magnaporthe Working Group established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF).

12.
IMA Fungus ; 7(1): 131-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27433444

ABSTRACT

With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.

13.
IMA Fungus ; 6(1): 145-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26203420

ABSTRACT

In advancing to one name for fungi, this paper treats generic names competing for use in the order Diaporthales (Ascomycota, Sordariomycetes) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexually or asexually typified. A table is presented that summarizes these recommendations. Among the genera most commonly encountered in this order, Cytospora is recommended over Valsa and Diaporthe over Phomopsis. New combinations are introduced for the oldest epithet of important species in the recommended genus. These include Amphiporthe tiliae, Coryneum lanciforme, Cytospora brevispora, C. ceratosperma, C. cinereostroma, C. eugeniae, C. fallax, C. myrtagena, Diaporthe amaranthophila, D. annonacearum, D. bougainvilleicola, D. caricae-papayae, D. cocoina, D. cucurbitae, D. juniperivora, D. leptostromiformis, D. pterophila, D. theae, D. vitimegaspora, Mastigosporella georgiana, Pilidiella angustispora, P. calamicola, P. pseudogranati, P. stromatica, and P. terminaliae.

14.
Fungal Biol ; 119(5): 383-407, 2015 May.
Article in English | MEDLINE | ID: mdl-25937066

ABSTRACT

Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Glycine max/microbiology , Magnoliopsida/microbiology , Phylogeny , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/pathogenicity , Fungal Proteins/genetics , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Tubulin/genetics , Virulence
15.
Mycologia ; 107(3): 532-57, 2015.
Article in English | MEDLINE | ID: mdl-25800252

ABSTRACT

The genus Cosmospora includes nectrioid fungi that grow on polypores and xylariaceous fungi. The collections growing on xylariaceous fungi have been identified recently as Cosmospora viliuscula. In this paper the phylogeny and taxonomy of C. viliuscula are investigated. A phylogeny was generated with maximum likelihood and Bayesian inference methods applied to a three-partition dataset (ITS, 28S, MCM7-RPB1-TUB2). Based on these results, we demonstrate that Cosmospora viliuscula represents a diverse species complex comprising more than 10 species. Seven new species are described, including three single-strain lineages, and the sexual states of C. arxii and C. khandalensis are described for the first time. The sexual states of these fungi tend to have a high degree of morphological homoplasy, making it difficult to differentiate among them based on morphological characters alone. However, the apparent host specificity of species in this complex aide in the diagnosis of these fungi. In addition, the RPB1 marker provides sufficient resolution to distinguish these fungi.


Subject(s)
Hypocreales/classification , DNA, Fungal/genetics , Hypocreales/genetics , Hypocreales/growth & development , Molecular Sequence Data , Phylogeny , Spores, Fungal/classification , Spores, Fungal/genetics , Spores, Fungal/growth & development
16.
IMA Fungus ; 6(2): 507-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26734553

ABSTRACT

This paper provides recommendations of one name for use among pleomorphic genera in Dothideomycetes by the Working Group on Dothideomycetes established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). A number of these generic names are proposed for protection because they do not have priority and/or the generic name selected for use is asexually typified. These include: Acrogenospora over Farlowiella; Alternaria over Allewia, Lewia, and Crivellia; Botryosphaeria over Fusicoccum; Camarosporula over Anthracostroma; Capnodium over Polychaeton; Cladosporium over Davidiella; Corynespora over Corynesporasca; Curvularia over Pseudocochliobolus; Elsinoë over Sphaceloma; Excipulariopsis over Kentingia; Exosporiella over Anomalemma; Exserohilum over Setosphaeria; Gemmamyces over Megaloseptoria; Kellermania over Planistromella; Kirschsteiniothelia over Dendryphiopsis; Lecanosticta over Eruptio; Paranectriella over Araneomyces; Phaeosphaeria over Phaeoseptoria; Phyllosticta over Guignardia; Podonectria over Tetracrium; Polythrincium over Cymadothea; Prosthemium over Pleomassaria; Ramularia over Mycosphaerella; Sphaerellopsis over Eudarluca; Sphaeropsis over Phaeobotryosphaeria; Stemphylium over Pleospora; Teratosphaeria over Kirramyces and Colletogloeopsis; Tetraploa over Tetraplosphaeria; Venturia over Fusicladium and Pollaccia; and Zeloasperisporium over Neomicrothyrium. Twenty new combinations are made: Acrogenospora carmichaeliana (Berk.) Rossman & Crous, Alternaria scrophulariae (Desm.) Rossman & Crous, Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, P. dematioidea (Bubák & Wróbl.) Rossman & K.D. Hyde, P. fugax (Wallr.) Rossman & K.D. Hyde, P. nobleae (McKenzie & D. Matthews) Rossman & K.D. Hyde, P. triseptata (Drechsler) Rossman & K.D. Hyde, Schizothyrium cryptogamum (Batzer & Crous) Crous & Batzer, S. cylindricum (G.Y. Sun et al.) Crous & Batzer, S. emperorae (G.Y. Sun & L. Gao) Crous & Batzer, S. inaequale (G.Y. Sun & L. Gao) Crous & Batzer, S. musae (G.Y. Sun & L. Gao) Crous & Batzer, S. qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, S. tardecrescens (Batzer & Crous) Crous & Batzer, S. wisconsinense (Batzer & Crous) Crous & Batzer, Teratosphaeria epicoccoides (Cooke & Massee) Rossman & W.C. Allen, Venturia catenospora (Butin) Rossman & Crous, V. convolvularum (Ondrej) Rossman & Crous, V. oleaginea (Castagne) Rossman & Crous, and V. phillyreae (Nicolas & Aggéry) Rossman & Crous, combs. nov. Three replacement names are also proposed: Pyrenophora grahamii Rossman & K.D. Hyde, Schizothyrium sunii Crous & Batzer, and Venturia barriae Rossman & Crous noms. nov.

18.
IMA Fungus ; 5(1): 81-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25083410

ABSTRACT

With the changes implemented in the International Code of Nomenclature for algae, fungi and plants, fungi may no longer have more than one scientific name. Although determining which scientific name to use is based on the principle of priority, situations exist in which applying a strict principle of priority does not contribute to the nomenclatural stability of fungi, thus exceptions can be made to this principle. Examples are presented showing how the single scientific name is determined at both the generic and specific level. In addition procedures are outlined for making exceptions to this rule. Considerable progress has been made in determining which genus to use for major groups of fungi. Interested scientists are invited to participate in the process of moving to one scientific name for fungi by contacting members dealing with specific groups of fungi as listed on the website of the International Commission for the Taxonomy of Fungi (http://www.fungaltaxonomy.org/subcommissions). A new combination of Clonostachys is also made.

19.
IMA Fungus ; 5(1): 91-120, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25083411

ABSTRACT

In advancing to one scientific name for fungi, this paper treats genera competing for use in the phylogenetically defined class Leotiomycetes except for genera of Erysiphales. Two groups traditionally included in the so-called "inoperculate discomycetes" have been excluded from this class and are also not included here, specifically Geoglossomycetes and Orbiliomycetes. A recommendation is made about the generic name to use in cases in which two or more generic names are synonyms or taxonomically congruent along with the rationale for the recommendation. In some cases the recommended generic name does not have priority or is based on an asexual type species, thus needs to be protected and ultimately approved according to Art. 57.2 of the International Code of Nomenclature for algae, fungi and plants (ICN). A table is presented listing all competing generic names and their type species noting the recommended generic name. New combinations are introduced for the oldest epithet in the recommended genus including Ascocalyx berenice, Ascoconidium purpurascens, Ascocoryne albida, A. trichophora, Blumeriella filipendulae, B. ceanothi, Botrytis arachidis, B. fritillariae-pallidoflori, Calloria urticae, Calycellina aspera, Dematioscypha delicata, Dermea abietinum, D. boycei, D. stellata, Diplocarpon alpestre, D. fragariae, Godroniopsis peckii, Grovesinia moricola, Heterosphaera sublineolata, Hyphodiscus brachyconium, H. brevicollaris, H. luxurians, Leptotrochila campanulae, Monilinia polystroma, Neofabraea actinidae, N. citricarpa, N. vagabunda, Oculimacula aestiva, O. anguioides, Pezicula brunnea, P. californiae, P. cornina, P. diversispora, P. ericae, P. melanogena, P. querciphila, P. radicicola, P. rhizophila, Phialocephala piceae, Pilidium lythri, Rhabdocline laricis, Streptotinia streptothrix, Symphyosirinia parasitica, S. rosea, Unguiculariopsis caespitosa, and Vibrissea laxa.

20.
PLoS One ; 8(10): e76737, 2013.
Article in English | MEDLINE | ID: mdl-24204665

ABSTRACT

The distribution of microbial species, including fungi, has long been considered cosmopolitan. Recently, this perception has been challenged by molecular studies in historical biogeography, phylogeny and population genetics. Here we explore this issue using the fungal morphological species Thelonectria discophora, one of the most common species of fungi in the family Nectriaceae, encountered in almost all geographic regions and considered as a cosmopolitan taxon. In order to determine if T. discophora is a single cosmopolitan species or an assemblage of sibling species, we conducted various phylogenetic analyses, including standard gene concatenation, Bayesian concordance methods, and coalescent-based species tree reconstruction on isolates collected from a wide geographic range. Results show that diversity among isolates referred as T. discophora is greatly underestimated and that it represents a species complex. Within this complex, sixteen distinct highly supported lineages were recovered, each of which has a restricted geographic distribution and ecology. The taxonomic status of isolates regarded as T. discophora is reconsidered, and the assumed cosmopolitan distribution of this species is rejected. We discuss how assumptions about geographically widespread species have implications regarding their taxonomy, true diversity, biological diversity conservation, and ecological functions.


Subject(s)
Genetic Speciation , Genetic Variation , Hypocreales/genetics , Phylogeny , Actins/genetics , Bayes Theorem , DNA, Fungal/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Fungal Proteins/genetics , Geography , Hypocreales/classification , Hypocreales/growth & development , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Protein Subunits/genetics , RNA Polymerase II/genetics , Sequence Analysis, DNA , Species Specificity , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...