Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1154647, 2023.
Article in English | MEDLINE | ID: mdl-37125029

ABSTRACT

Introduction: The circadian system synchronizes behavior and physiology to the 24-h light- dark (LD) cycle. Timing of food intake and fasting periods provide strong signals for peripheral circadian clocks regulating nutrient assimilation, glucose, and lipid metabolism. Mice under 12 h light:12 h dark (LD) cycles exhibit behavioral activity and feeding during the dark period, while fasting occurs at rest during light. Disruption of energy metabolism, leading to an increase in body mass, was reported in experimental models of circadian desynchronization. In this work, the effects of chronic advances of the LD cycles (chronic jet-lag protocol, CJL) were studied on the daily homeostasis of energy metabolism and weight gain. Methods: Male C57 mice were subjected to a CJL or LD schedule, measuring IPGTT, insulinemia, microbiome composition and lipidemia. Results: Mice under CJL show behavioral desynchronization and feeding activity distributed similarly at the light and dark hours and, although feeding a similar daily amount of food as compared to controls, show an increase in weight gain. In addition, ad libitum glycemia rhythm was abolished in CJL-subjected mice, showing similar blood glucose values at light and dark. CJL also generated glucose intolerance at dark in an intraperitoneal glucose tolerance test (IPGTT), with increased insulin release at both light and dark periods. Low-density lipoprotein (LDL) cholesterolemia was increased under this condition, but no changes in HDL cholesterolemia were observed. Firmicutes/Bacteroidetes ratio was analyzed as a marker of circadian disruption of microbiota composition, showing opposite phases at the light and dark when comparing LD vs. CJL. Discussion: Chronic misalignment of feeding/fasting rhythm leads to metabolic disturbances generating nocturnal hyperglycemia, glucose intolerance and hyperinsulinemia in a IPGTT, increased LDL cholesterolemia, and increased weight gain, underscoring the importance of the timing of food consumption with respect to the circadian system for metabolic health.

2.
J Biol Rhythms ; 38(2): 131-147, 2023 04.
Article in English | MEDLINE | ID: mdl-36680418

ABSTRACT

Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. Drosophila melanogaster has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode Caenorhabditis elegans provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate C. elegans as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the C. elegans' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Circadian Clocks/genetics , Temperature
3.
Protein Expr Purif ; 153: 18-25, 2019 01.
Article in English | MEDLINE | ID: mdl-30125621

ABSTRACT

Saint Louis encephalitis virus (SLEV) and West Nile virus (WNV) are two of the major causes of arboviral encephalitis in the Americas. The co-circulation of related flaviviruses in the Americas and prior vaccination against flaviviruses pose problems to the diagnostic specificity of serological assays due to the development of cross-reactive antibodies. An accurate diagnosis method capable of differentiating these related viruses is needed. NS1 is a glycosylated, nonstructural protein, of about 46 kDa which has a highly conserved structure. Anti-NS1 antibodies can be detected within 4-8 days after the initial exposure and NS1 is the least cross-reactive of the flaviviral antigens. This study was aimed to generate SLEV and WNV NS1 recombinants proteins for the development of a flavivirus diagnostic test. Local Argentinian isolates were used as the source of NS1 gene cloning, expression, and purification. The protein was expressed in Escherichia coli as inclusion bodies and further purified by metal-chelating affinity chromatography (IMAC) under denaturing conditions. Human sera from SLEV and WNV positive cases showed reactivity to the recombinant NS1 proteins by western blot. The unfolded NS1 proteins were also used as immunogens. The polyclonal antibodies elicited in immunized mice recognized the two recombinant proteins with differential reactivity.


Subject(s)
Antibodies, Viral/biosynthesis , Antigens, Viral/immunology , Encephalitis Virus, St. Louis/immunology , Encephalitis, St. Louis/diagnosis , Viral Nonstructural Proteins/immunology , West Nile Fever/diagnosis , West Nile virus/immunology , Animals , Antibody Specificity , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , Argentina , Blotting, Western , Chromatography, Affinity , Cloning, Molecular , Cross Reactions , Diagnosis, Differential , Encephalitis Virus, St. Louis/chemistry , Encephalitis Virus, St. Louis/genetics , Encephalitis, St. Louis/immunology , Encephalitis, St. Louis/virology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Inclusion Bodies/chemistry , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Viral Nonstructural Proteins/biosynthesis , Viral Nonstructural Proteins/genetics , West Nile Fever/immunology , West Nile Fever/virology , West Nile virus/chemistry , West Nile virus/genetics
4.
J Virol Methods ; 256: 24-31, 2018 06.
Article in English | MEDLINE | ID: mdl-29496429

ABSTRACT

Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants.


Subject(s)
Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Gene Expression , Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Rotavirus/genetics , Rotavirus/immunology , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Humans , Immunity, Humoral , Male , Mice , Phylogeny , Recombinant Proteins , Vero Cells
5.
J Med Virol ; 82(6): 1083-93, 2010 May.
Article in English | MEDLINE | ID: mdl-20419826

ABSTRACT

Detection and characterization of group A rotavirus in Buenos Aires, Argentina, was conducted on 710 fecal samples from children 0-15 years old collected between 2004 and 2007. Rotavirus was detected in 140 (19.7%) samples with G9P[8] (30.0%) and G2P[4] (21.4%) as the most common genotypes. Mixed (G and/or P) infections accounted for 17.9% of the samples and the emerging G12 strain was detected during 2004 (3.5%) and 2007 (2.5%). Genotype G2 was the most prevalent during 2004 (43.9%) and 2007 (57.5%) and G9 during 2005 (58.0%) and 2006 (61.5%). Analysis of genotype prevalences from studies performed since 1996 in the same area showed striking natural fluctuations in G and P genotype frequencies. In particular, G2P[4] strains disappeared after 1999 and reemerged in 2004 to become the predominant strain by 2007 with a concomitant major decrease in G1P[8] prevalence. The VP7 genes from Argentinian G9 and G2 strains were sequenced and phylogenetic analysis was conducted in order to compare with sequences from strains isolated in regional countries reported previously. Several changes in the deduced amino acid sequence in antigenic regions of the VP7 protein from Argentinian and Brazilian strains were identified compared to vaccine strains. Overall, this study revealed relationships in the circulation of rotavirus strains in South American countries and major replacements in dominant genotypes, including the virtual disappearance of G1P[8] strains in a non-vaccinated population. High numbers of mixed infections speeding up evolution, circulation of rare serotypes, and antigenic drift could, eventually, become challenges for new vaccines.


Subject(s)
Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/classification , Rotavirus/genetics , Adolescent , Antigens, Viral/genetics , Argentina , Brazil/epidemiology , Capsid Proteins/genetics , Child , Child, Preschool , Cluster Analysis , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Rotavirus/isolation & purification , Sequence Analysis, DNA , Sequence Homology
6.
J Med Virol ; 81(6): 1109-16, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19382268

ABSTRACT

The role of group C rotaviruses as a cause of diarrhea was examined among children <17 years of age admitted to a Hospital in a suburban area of Buenos Aires, Argentina between 1997 and 2003. A total of 1,579 fecal samples were screened for group A (RVA) and C (RVC) rotaviruses by two in-house ELISA methods at Quilmes University (UNQ-ELISA). Samples positive, doubtful and negative by RVC specific UNQ-ELISA (n = 246) were examined further for RVC by another in-house ELISA (CDC-ELISA), electron microscopy, RT-PCR, nested PCR, and Southern hybridization. Sensitivity, specificity, and predictive values for each test were determined. While the sensitivity was comparable for the nested PCR and CDC-ELISA methods (82.5%), the molecular methods were slightly more specific. Poorly preserved particles were often seen in fecal samples, suggesting that degradation of RNA could be a factor influencing the performance of molecular methods. The incidence of RVC was estimated to be 3% without apparent differences among seasons. RVC infected patients had a significantly (P < 0.001) higher median age (6 years vs. 1 year) than those with RVA infection. Sequence of the RVC VP7 gene from six Argentinean strains and sequences reported previously in different countries showed high nucleotide (94.4-99.9%) sequence identities, indicating a high degree of conservation for human RVC VP7 genes among strains collected on five continents over a period of 17 years. These findings indicate that RVC is a significant cause of diarrhea and it is necessary to develop simple and sensitive serological methods for its detection.


Subject(s)
Diarrhea/virology , Rotavirus Infections/diagnosis , Rotavirus/classification , Rotavirus/isolation & purification , Adolescent , Antigens, Viral/analysis , Argentina , Blotting, Southern/methods , Child , Child, Preschool , Conserved Sequence , Enzyme-Linked Immunosorbent Assay/methods , Feces/virology , Hospitals , Humans , Infant , Infant, Newborn , Molecular Sequence Data , Polymerase Chain Reaction/methods , Predictive Value of Tests , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Rotavirus/genetics , Rotavirus/immunology , Rotavirus Infections/virology , Sensitivity and Specificity , Sequence Analysis, DNA , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...