Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
Leukemia ; 38(2): 281-290, 2024 02.
Article in English | MEDLINE | ID: mdl-38228680

ABSTRACT

Despite recent refinements in the diagnostic and prognostic assessment of CEBPA mutations in AML, several questions remain open, i.e. implications of different types of basic region leucin zipper (bZIP) mutations, the role of co-mutations and the allelic state. Using pooled primary data analysis on 1010 CEBPA-mutant adult AML patients, a comparison was performed taking into account the type of mutation (bZIP: either typical in-frame insertion/deletion (InDel) mutations (bZIPInDel), frameshift InDel or nonsense mutations inducing translational stop (bZIPSTOP) or single base-pair missense alterations (bZIPms), and transcription activation domain (TAD) mutations) and the allelic state (single (smCEBPA) vs. double mutant (dmCEBPA)). Only bZIPInDel patients had significantly higher rates of complete remission and longer relapse free and overall survival (OS) compared with all other CEBPA-mutant subgroups. Moreover, co-mutations in bZIPInDel patients (e.g. GATA2, FLT3, WT1 as well as ELN2022 adverse risk aberrations) had no independent impact on OS, whereas in non-bZIPInDel patients, grouping according to ELN2022 recommendations added significant prognostic information. In conclusion, these results demonstrate bZIPInDel mutations to be the major independent determinant of outcome in CEBPA-mutant AML, thereby refining current classifications according to WHO (including all dmCEBPA and smCEBPA bZIP) as well as ELN2022 and ICC recommendations (including CEBPA bZIPms).


Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , CCAAT-Enhancer-Binding Proteins/genetics , Frameshift Mutation , Mutation , Prognosis
3.
Leukemia ; 38(1): 45-57, 2024 01.
Article in English | MEDLINE | ID: mdl-38017103

ABSTRACT

Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.


Subject(s)
Leukemia, Myeloid, Acute , Sex Characteristics , Adult , Humans , Male , Female , Prognosis , Nucleophosmin , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , fms-Like Tyrosine Kinase 3/genetics
4.
iScience ; 26(12): 108271, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047080

ABSTRACT

Monitoring disease response after intensive chemotherapy for acute myeloid leukemia (AML) currently requires invasive bone marrow biopsies, imposing a significant burden on patients. In contrast, cell-free tumor DNA (ctDNA) in peripheral blood, carrying tumor-specific mutations, offers a less-invasive assessment of residual disease. However, the relationship between ctDNA levels and bone marrow blast kinetics remains unclear. We explored this in 10 AML patients with NPM1 and IDH2 mutations undergoing initial chemotherapy. Comparison of mathematical mixed-effect models showed that (1) inclusion of blast cell death in the bone marrow, (2) transition of ctDNA to peripheral blood, and (3) ctDNA decay in peripheral blood describes kinetics of blast cells and ctDNA best. The fitted model allows prediction of residual bone marrow blast content from ctDNA, and its scaling factor, representing clonal heterogeneity, correlates with relapse risk. Our study provides precise insights into blast and ctDNA kinetics, offering novel avenues for AML disease monitoring.

5.
Br J Haematol ; 202(6): 1165-1177, 2023 09.
Article in English | MEDLINE | ID: mdl-37455345

ABSTRACT

Acute megakaryoblastic leukaemia (AMKL) is associated with poor prognosis. Limited information is available on its cytogenetics, molecular genetics and clinical outcome. We performed genetic analyses, evaluated prognostic factors and the value of allogeneic haematopoietic stem cell transplantation (allo-HSCT) in a homogenous adult AMKL patient cohort. We retrospectively analysed 38 adult patients with AMKL (median age: 58 years, range: 21-80). Most received intensive treatment in AML Cooperative Group (AMLCG) trials between 2001 and 2016. Cytogenetic data showed an accumulation of adverse risk markers according to ELN 2017 and an unexpected high frequency of structural aberrations on chromosome arm 1q (33%). Most frequently, mutations occurred in TET2 (23%), TP53 (23%), JAK2 (19%), PTPN11 (19%) and RUNX1 (15%). Complete remission rate in 33 patients receiving intensive chemotherapy was 33% and median overall survival (OS) was 33 weeks (95% CI: 21-45). Patients undergoing allo-HSCT (n = 14) had a superior median OS (68 weeks; 95% CI: 11-126) and relapse-free survival (RFS) of 27 weeks (95% CI: 4-50), although cumulative incidence of relapse after allo-HSCT was high (62%). The prognosis of AMKL is determined by adverse genetic risk factors and therapy resistance. So far allo-HSCT is the only potentially curative treatment option in this dismal AML subgroup.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid, Acute , Adult , Humans , Middle Aged , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/therapy , Leukemia, Myeloid, Acute/genetics , Retrospective Studies , Disease-Free Survival , Neoplasm Recurrence, Local/genetics , Chromosome Aberrations , Prognosis , Hematopoietic Stem Cell Transplantation/adverse effects , Chromosomes
6.
iScience ; 26(8): 107328, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520699

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) describes the age-related acquisition of somatic mutations in hematopoietic stem/progenitor cells (HSPC) leading to clonal blood cell expansion. Although CHIP mutations drive myeloid malignancies like myelodysplastic syndromes (MDS) it is unknown if clonal expansion is attributable to changes in cell type kinetics, or involves reorganization of the hematopoietic hierarchy. Using computational modeling we analyzed differentiation and proliferation kinetics of cultured hematopoietic stem cells (HSC) from 8 healthy individuals, 7 CHIP, and 10 MDS patients. While the standard hematopoietic hierarchy explained HSPC kinetics in healthy samples, 57% of CHIP and 70% of MDS samples were best described with alternative hierarchies. Deregulated kinetics were found at various HSPC compartments with high inter-individual heterogeneity in CHIP and MDS, while altered HSC rates were most relevant in MDS. Quantifying kinetic heterogeneity in detail, we show that reorganization of the HSPC compartment is already detectable in the premalignant CHIP state.

7.
Leukemia ; 37(6): 1234-1244, 2023 06.
Article in English | MEDLINE | ID: mdl-37041198

ABSTRACT

The revised 2022 European LeukemiaNet (ELN) AML risk stratification system requires validation in large, homogeneously treated cohorts. We studied 1118 newly diagnosed AML patients (median age, 58 years; range, 18-86 years) who received cytarabine-based induction chemotherapy between 1999 and 2012 and compared ELN-2022 to the previous ELN-2017 risk classification. Key findings were validated in a cohort of 1160 mostly younger patients. ELN-2022 reclassified 15% of patients, 3% into more favorable, and 12% into more adverse risk groups. This was mainly driven by patients reclassified from intermediate- to adverse-risk based on additional myelodysplasia-related mutations being included as adverse-risk markers. These patients (n = 79) had significantly better outcomes than patients with other adverse-risk genotypes (5-year OS, 26% vs. 12%) and resembled the remaining intermediate-risk group. Overall, time-dependent ROC curves and Harrel's C-index controlling for age, sex, and AML type (de novo vs. sAML/tAML) show slightly worse prognostic discrimination of ELN-2022 compared to ELN-2017 for OS. Further refinement of ELN-2022 without including additional genetic markers is possible, in particular by recognizing TP53-mutated patients with complex karyotypes as "very adverse". In summary, the ELN-2022 risk classification identifies a larger group of adverse-risk patients at the cost of slightly reduced prognostic accuracy compared to ELN-2017.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Middle Aged , Leukemia, Myeloid, Acute/drug therapy , Risk Factors , Prognosis , Mutation , Risk Assessment
10.
Cancer ; 128(24): 4213-4222, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36271776

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with initial hyperleukocytosis is associated with high early mortality and a poor prognosis. The aims of this study were to delineate the underlying molecular landscape in the largest cytogenetic risk group, cytogenetically normal acute myeloid leukemia (CN-AML), and to assess the prognostic relevance of recurrent mutations in the context of hyperleukocytosis and clinical risk factors. METHODS: The authors performed a targeted sequencing of 49 recurrently mutated genes in 56 patients with newly diagnosed CN-AML and initial hyperleukocytosis of ≥100 G/L treated in the AMLCG99 study. The median number of mutated genes per patient was 5. The most common mutations occurred in FLT3 (73%), NPM1 (75%), and TET2 (45%). RESULTS: The predominant pathways affected by mutations were signaling (84% of patients), epigenetic modifiers (75% of patients), and nuclear transport (NPM1; 75%) of patients. AML with hyperleukocytosis was enriched for molecular subtypes that negatively affected the prognosis, including a high percentage of patients presenting with co-occurring mutations in signaling and epigenetic modifiers such as FLT3 internal tandem duplications and TET2 mutations. CONCLUSIONS: Despite these unique molecular features, clinical risk factors, including high white blood count, hemoglobin level, and lactate dehydrogenase level at baseline, remained the predictors for overall survival and relapse-free survival in hyperleukocytotic CN-AML.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Nuclear Proteins/genetics , Nucleophosmin , Leukemia, Myeloid, Acute/therapy , Mutation , Prognosis , fms-Like Tyrosine Kinase 3/genetics
11.
J Hematol Oncol ; 15(1): 126, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064577

ABSTRACT

BACKGROUND: The role of allogeneic hematopoietic cell transplantation (alloHCT) in acute myeloid leukemia (AML) with mutated IDH1/2 has not been defined. Therefore, we analyzed a large cohort of 3234 AML patients in first complete remission (CR1) undergoing alloHCT or conventional chemo-consolidation and investigated outcome in respect to IDH1/2 mutational subgroups (IDH1 R132C, R132H and IDH2 R140Q, R172K). METHODS: Genomic DNA was extracted from bone marrow or peripheral blood samples at diagnosis and analyzed for IDH mutations with denaturing high-performance liquid chromatography, Sanger sequencing and targeted myeloid panel next-generation sequencing, respectively. Statistical as-treated analyses were performed using R and standard statistical methods (Kruskal-Wallis test for continuous variables, Chi-square test for categorical variables, Cox regression for univariate and multivariable models), incorporating alloHCT as a time-dependent covariate. RESULTS: Among 3234 patients achieving CR1, 7.8% harbored IDH1 mutations (36% R132C and 47% R132H) and 10.9% carried IDH2 mutations (77% R140Q and 19% R172K). 852 patients underwent alloHCT in CR1. Within the alloHCT group, 6.2% had an IDH1 mutation (43.4% R132C and 41.4% R132H) and 10% were characterized by an IDH2 mutation (71.8% R140Q and 24.7% R172K). Variants IDH1 R132C and IDH2 R172K showed a significant benefit from alloHCT for OS (p = .017 and p = .049) and RFS (HR = 0.42, p = .048 and p = .009) compared with chemotherapy only. AlloHCT in IDH2 R140Q mutated AML resulted in longer RFS (HR = 0.4, p = .002). CONCLUSION: In this large as-treated analysis, we showed that alloHCT is able to overcome the negative prognostic impact of certain IDH mutational subclasses in first-line consolidation treatment and could pending prognostic validation, provide prognostic value for AML risk stratification and therapeutic decision making.


Subject(s)
Hematopoietic Stem Cell Transplantation , Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nucleophosmin , Prognosis
12.
Leukemia ; 36(11): 2647-2655, 2022 11.
Article in English | MEDLINE | ID: mdl-36131041

ABSTRACT

Clonal hematopoiesis (CH) is characterized by somatic mutations in blood cells of individuals without hematologic disease. While the mutational landscape of CH in peripheral blood (PB) has been well characterized, detailed analyses addressing its spatial and cellular distribution in the bone marrow (BM) compartment are sparse. We studied CH driver mutations in healthy individuals (n = 261) across different anatomical and cellular compartments. Variant allele frequencies were higher in BM than PB and positively correlated with the number of driver variants, yet remained stable during a median of 12 months of follow-up. In CH carriers undergoing simultaneous bilateral hip replacement, we detected ASXL1-mutant clones in one anatomical location but not the contralateral side, indicating intra-patient spatial heterogeneity. Analyses of lineage involvement in ASXL1-mutated CH showed enriched clonality in BM stem and myeloid progenitor cells, while lymphocytes were particularly involved in individuals carrying the c.1934dupG variant, indicating different ASXL1 mutations may have distinct lineage distribution patterns. Patients with overt myeloid malignancies showed higher mutation numbers and allele frequencies and a shifting mutation landscape, notably characterized by increasing prevalence of DNMT3A codon R882 variants. Collectively, our data provide novel insights into the genetics, evolution, and spatial and lineage-specific BM involvement of CH.


Subject(s)
Clonal Hematopoiesis , Myeloproliferative Disorders , Humans , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Mutation , Clone Cells
13.
Blood Adv ; 6(5): 1394-1405, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34794176

ABSTRACT

Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are among the most frequent alterations in acute myeloid leukemia (AML) and can be found in ∼20% of patients at diagnosis. Among 4930 patients (median age, 56 years; interquartile range, 45-66) with newly diagnosed, intensively treated AML, we identified IDH1 mutations in 423 (8.6%) and IDH2 mutations in 575 (11.7%). Overall, there were no differences in response rates or survival for patients with mutations in IDH1 or IDH2 compared with patients without mutated IDH1/2. However, distinct clinical and comutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome. IDH1-R132C was associated with increased age, lower white blood cell (WBC) count, less frequent comutation of NPM1 and FLT3 internal tandem mutation (ITD) as well as with lower rate of complete remission and a trend toward reduced overall survival (OS) compared with other IDH1 mutation variants and wild-type (WT) IDH1/2. In our analysis, IDH2-R172K was associated with significantly lower WBC count, more karyotype abnormalities, and less frequent comutations of NPM1 and/or FLT3-ITD. Among patients within the European LeukemiaNet 2017 intermediate- and adverse-risk groups, relapse-free survival and OS were significantly better for those with IDH2-R172K compared with WT IDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific comutation pattern and favorable outcome. In summary, the presented data from a large cohort of patients with IDH1/2 mutated AML indicate novel and clinically relevant findings for the most common IDH mutation subtypes.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutation , Nucleophosmin , Phenotype
14.
Blood Adv ; 5(22): 4752-4761, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34535016

ABSTRACT

Prediction of resistant disease at initial diagnosis of acute myeloid leukemia (AML) can be achieved with high accuracy using cytogenetic data and 29 gene expression markers (Predictive Score 29 Medical Research Council; PS29MRC). Our aim was to establish PS29MRC as a clinically usable assay by using the widely implemented NanoString platform and further validate the classifier in a more recently treated patient cohort. Analyses were performed on 351 patients with newly diagnosed AML intensively treated within the German AML Cooperative Group registry. As a continuous variable, PS29MRC performed best in predicting induction failure in comparison with previously published risk models. The classifier was strongly associated with overall survival. We were able to establish a previously defined cutoff that allows classifier dichotomization (PS29MRCdic). PS29MRCdic significantly identified induction failure with 59% sensitivity, 77% specificity, and 72% overall accuracy (odds ratio, 4.81; P = 4.15 × 10-10). PS29MRCdic was able to improve the European Leukemia Network 2017 (ELN-2017) risk classification within every category. The median overall survival with high PS29MRCdic was 1.8 years compared with 4.3 years for low-risk patients. In multivariate analysis including ELN-2017 and clinical and genetic markers, only age and PS29MRCdic were independent predictors of refractory disease. In patients aged ≥60 years, only PS29MRCdic remained as a significant variable. In summary, we confirmed PS29MRC as a valuable classifier to identify high-risk patients with AML. Risk classification can still be refined beyond ELN-2017, and predictive classifiers might facilitate clinical trials focusing on these high-risk patients with AML.


Subject(s)
Leukemia, Myeloid, Acute , Cohort Studies , Cytogenetics , Gene Expression , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Prognosis
15.
Blood ; 138(18): 1727-1732, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34139005

ABSTRACT

Clonal hematopoiesis (CH) is an age-related condition predisposing to blood cancer and cardiovascular disease (CVD). Murine models demonstrate CH-mediated altered immune function and proinflammation. Low-grade inflammation has been implicated in the pathogenesis of osteoarthritis (OA), the main indication for total hip arthroplasty (THA). THA-derived hip bones serve as a major source of healthy hematopoietic cells in experimental hematology. We prospectively investigated frequency and clinical associations of CH in 200 patients without known hematologic disease who were undergoing THA. Prevalence of CH was 50%, including 77 patients with CH of indeterminate potential (CHIP, defined as somatic variant allele frequencies [VAFs] ≥2%), and 23 patients harboring CH with lower mutation burden (VAF, 1% to 2%). Most commonly mutated genes were DNMT3A (29.5%), TET2 (15.0%), and ASXL1 (3.5%). CHIP is significantly associated with lower hemoglobin, higher mean corpuscular volume, previous or present malignant disease, and CVD. Strikingly, we observed a previously unreported association of CHIP with autoimmune diseases (AIDs; multivariable adjusted odds ratio, 6.6; 95% confidence interval, 1.7-30; P = .0081). These findings underscore the association between CH and inflammatory diseases. Our results have considerable relevance for managing patients with OA and AIDs or mild anemia and question the use of hip bone-derived cells as healthy experimental controls.


Subject(s)
Arthroplasty, Replacement, Hip , Autoimmune Diseases/genetics , Clonal Hematopoiesis , Gene Frequency , Mutation , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/complications , Cells, Cultured , DNA Methyltransferase 3A/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Humans , Male , Middle Aged , Young Adult
16.
J Mol Diagn ; 23(8): 975-985, 2021 08.
Article in English | MEDLINE | ID: mdl-34020042

ABSTRACT

In acute myeloid leukemia (AML), somatic gene mutations are important prognostic markers and increasingly constitute therapeutic targets. Therefore, robust, sensitive, and fast diagnostic assays are needed. Current techniques for mutation screening and quantification, including next-generation sequencing and quantitative PCR, each have weaknesses that leave a need for novel diagnostic tools. We established double drop-off digital droplet PCR (DDO-ddPCR) assays for gene mutations in NPM1, IDH2, and NRAS, which can detect and quantify diverse alterations at two nearby hotspot regions present in these genes. These assays can be used for mutation screening as well as quantification and sequential monitoring. The assays were validated against next-generation sequencing and existing ddPCR assays and achieved high concordance with an overall sensitivity comparable to conventional digital PCR. In addition, the feasibility of detecting and monitoring genetic alterations in peripheral blood cell-free DNA (cfDNA) of patients with AML by DDO-ddPCR was studied. cfDNA analysis was found to have similar sensitivity compared to quantitative PCR-based analysis of peripheral blood. Finally, the cfDNA-based digital PCR in several clinical scenarios was found to be useful in long-term monitoring of target-specific therapy, early response assessment during induction chemotherapy, and identification of mutations in patients with extramedullary disease. Thus, DDO-ddPCR-based cfDNA analysis may complement existing genetic tools for diagnosis and disease monitoring in AML.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Real-Time Polymerase Chain Reaction/methods , Cell-Free Nucleic Acids , DNA, Neoplasm , Disease Management , Humans , Leukemia, Myeloid, Acute/therapy , Molecular Diagnostic Techniques , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
18.
Leukemia ; 34(10): 2621-2634, 2020 10.
Article in English | MEDLINE | ID: mdl-32358566

ABSTRACT

Previous studies demonstrated that splicing factor mutations are recurrent events in hematopoietic malignancies with both clinical and functional implications. However, their aberrant splicing patterns in acute myeloid leukemia remain largely unexplored. In this study, we characterized mutations in SRSF2, U2AF1, and SF3B1, the most commonly mutated splicing factors. In our clinical analysis of 2678 patients, splicing factor mutations showed inferior relapse-free and overall survival, however, these mutations did not represent independent prognostic markers. RNA-sequencing of 246 and independent validation in 177 patients revealed an isoform expression profile which is highly characteristic for each individual mutation, with several isoforms showing a strong dysregulation. By establishing a custom differential splice junction usage pipeline, we accurately detected aberrant splicing in splicing factor mutated samples. A large proportion of differentially used junctions were novel, including several junctions in leukemia-associated genes. In SRSF2(P95H) mutants, we further explored the possibility of a cascading effect through the dysregulation of the splicing pathway. Furthermore, we observed a validated impact on overall survival for two junctions overused in SRSF2(P95H) mutants. We conclude that splicing factor mutations do not represent independent prognostic markers. However, they do have genome-wide consequences on gene splicing leading to dysregulated isoform expression of several genes.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Phosphoproteins/genetics , RNA Splicing Factors/genetics , RNA Splicing , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Young Adult
19.
Leukemia ; 34(12): 3161-3172, 2020 12.
Article in English | MEDLINE | ID: mdl-32231256

ABSTRACT

The revised 2017 European LeukemiaNet (ELN) recommendations for genetic risk stratification of acute myeloid leukemia have been widely adopted, but have not yet been validated in large cohorts of AML patients. We studied 1116 newly diagnosed AML patients (age range, 18-86 years) who had received induction chemotherapy. Among 771 patients not selected by genetics, the ELN-2017 classification re-assigned 26.5% of patients into a more favorable or, more commonly, a more adverse-risk group compared with the ELN-2010 recommendations. Forty percent of the cohort, and 51% of patients ≥60 years, were classified as adverse-risk by ELN-2017. In 599 patients <60 years, estimated 5-year overall survival (OS) was 64% for ELN-2017 favorable, 42% for intermediate-risk and 20% for adverse-risk patients. Among 517 patients aged ≥60 years, corresponding 5-year OS rates were 37, 16, and 6%. Patients with biallelic CEBPA mutations or inv(16) had particularly favorable outcomes, while patients with mutated TP53 and a complex karyotype had especially poor prognosis. DNMT3A mutations associated with inferior OS within each ELN-2017 risk group. Our results validate the prognostic significance of the revised ELN-2017 risk classification in AML patients receiving induction chemotherapy across a broad age range. Further refinement of the ELN-2017 risk classification is possible.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Induction Chemotherapy/methods , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation/genetics , Prognosis , Risk Assessment/methods , Risk Factors , Survival Rate , Treatment Outcome , Young Adult
20.
Leukemia ; 34(1): 50-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31201358

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm resulting from the malignant transformation of myeloid progenitors. Despite intensive chemotherapy leading to initial treatment responses, relapse caused by intrinsic or acquired drug resistance represents a major challenge. Here, we report that histone 3 lysine 27 demethylase KDM6A (UTX) is targeted by inactivating mutations and mutation-independent regulation in relapsed AML. Analyses of matched diagnosis and relapse specimens from individuals with KDM6A mutations showed an outgrowth of the KDM6A mutated tumor population at relapse. KDM6A expression is heterogeneously regulated and relapse-specific loss of KDM6A was observed in 45.7% of CN-AML patients. KDM6A-null myeloid leukemia cells were more resistant to treatment with the chemotherapeutic agents cytarabine (AraC) and daunorubicin. Inducible re-expression of KDM6A in KDM6A-null cell lines suppressed proliferation and sensitized cells again to AraC treatment. RNA expression analysis and functional studies revealed that resistance to AraC was conferred by downregulation of the nucleoside membrane transporter ENT1 (SLC29A1) by reduced H3K27 acetylation at the ENT1 locus. Our results show that loss of KDM6A provides cells with a selective advantage during chemotherapy, which ultimately leads to the observed outgrowth of clones with KDM6A mutations or reduced KDM6A expression at relapse.


Subject(s)
Drug Resistance, Neoplasm/physiology , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Heterografts , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...