Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2405622, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961635

ABSTRACT

The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions, through a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.

2.
J Chem Phys ; 161(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38990116

ABSTRACT

MiMiC is a framework for performing multiscale simulations in which loosely coupled external programs describe individual subsystems at different resolutions and levels of theory. To make it highly efficient and flexible, we adopt an interoperable approach based on a multiple-program multiple-data (MPMD) paradigm, serving as an intermediary responsible for fast data exchange and interactions between the subsystems. The main goal of MiMiC is to avoid interfering with the underlying parallelization of the external programs, including the operability on hybrid architectures (e.g., CPU/GPU), and keep their setup and execution as close as possible to the original. At the moment, MiMiC offers an efficient implementation of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) that has demonstrated unprecedented parallel scaling in simulations of large biomolecules using CPMD and GROMACS as QM and MM engines, respectively. However, as it is designed for high flexibility with general multiscale models in mind, it can be straightforwardly extended beyond QM/MM. In this article, we illustrate the software design and the features of the framework, which make it a compelling choice for multiscale simulations in the upcoming era of exascale high-performance computing.

4.
Chimia (Aarau) ; 78(4): 243-250, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676618

ABSTRACT

Base excision repair enzymes (BERs) detect and repair oxidative DNA damage with efficacy despite the small size of the defects and their often only minor structural impact. A charge transfer (CT) model for rapid scanning of DNA stretches has been evoked to explain the high detection rate in the face of numerous, small lesions. The viability of CT DNA defect detection is explored via hybrid QM/MM computational studies that leverage the accuracy of quantum mechanics (QM) for a region of interest and the descriptive power of molecularmechanics (MM) for the remainder of the system. We find that the presence of an oxidative lesion lowers theredox free energy of oxidation by approximately 1.0 eV regardless of DNA compaction (free DNA versus packed DNA in nucleosome core particles) and damage location indicating the high feasibility of a CT-based process for defect detection in DNA.


Subject(s)
DNA , Oxidation-Reduction , Quantum Theory , DNA/chemistry , DNA Damage , Molecular Dynamics Simulation , DNA Repair
5.
Curr Opin Struct Biol ; 86: 102821, 2024 06.
Article in English | MEDLINE | ID: mdl-38688076

ABSTRACT

The complexity of biological systems and processes, spanning molecular to macroscopic scales, necessitates the use of multiscale simulations to get a comprehensive understanding. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations are crucial for capturing processes beyond the reach of classical MD simulations. The advent of exascale computing offers unprecedented opportunities for scientific exploration, not least within life sciences, where simulations are essential to unravel intricate molecular mechanisms underlying biological processes. However, leveraging the immense computational power of exascale computing requires innovative algorithms and software designs. In this context, we discuss the current status and future prospects of multiscale biomolecular simulations on exascale supercomputers with a focus on QM/MM MD. We highlight our own efforts in developing a versatile and high-performance multiscale simulation framework with the aim of efficient utilization of state-of-the-art supercomputers. We showcase its application in uncovering complex biological mechanisms and its potential for leveraging exascale computing.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Software , Algorithms
6.
Chem Sci ; 15(12): 4434-4451, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516095

ABSTRACT

The accurate representation of the structural and dynamical properties of water is essential for simulating the unique behavior of this ubiquitous solvent. Here we assess the current status of describing liquid water using ab initio molecular dynamics, with a special focus on the performance of all the later generation Minnesota functionals. Findings are contextualized within the current knowledge on DFT for describing bulk water under ambient conditions and compared to experimental data. We find that, contrary to the prevalent idea that local and semilocal functionals overstructure water and underestimate dynamical properties, M06-L, revM06-L, and M11-L understructure water, while MN12-L and MN15-L overdistance water molecules due to weak cohesive effects. This can be attributed to a weakening of the hydrogen bond network, which leads to dynamical fingerprints that are over fast. While most of the hybrid Minnesota functionals (M06, M08-HX, M08-SO, M11, MN12-SX, and MN15) also yield understructured water, their dynamical properties generally improve over their semilocal counterparts. It emerges that exact exchange is a crucial component for accurately describing hydrogen bonds, which ultimately leads to corrections in both the dynamical and structural properties. However, an excessive amount of exact exchange strengthens hydrogen bonds and causes overstructuring and slow dynamics (M06-HF). As a compromise, M06-2X is the best performing Minnesota functional for water, and its D3 corrected variant shows very good structural agreement. From previous studies considering nuclear quantum effects (NQEs), the hybrid revPBE0-D3, and the rung-5 RPA (RPA@PBE) have been identified as the only two approximations that closely agree with experiments. Our results suggest that the M06-2X(-D3) functionals have the potential to further improve the reproduction of experimental properties when incorporating NQEs through path integral approaches. This work provides further proof that accurate modeling of water interactions requires the inclusion of both exact exchange and balanced (non-local) correlation, highlighting the need for higher rungs on Jacob's ladder to achieve predictive simulations of complex biological systems in aqueous environments.

SELECTION OF CITATIONS
SEARCH DETAIL