Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 46(7): 2128-2141, 2023 07.
Article in English | MEDLINE | ID: mdl-37066607

ABSTRACT

Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.


Subject(s)
Abscisic Acid , Glycine max , Abscisic Acid/pharmacology , Temperature , Ethylenes/pharmacology , Plants
2.
Environ Sci Policy ; 131: 177-187, 2022 May.
Article in English | MEDLINE | ID: mdl-35505912

ABSTRACT

Food systems worldwide are vulnerable to Phosphorus (P) supply disruptions and price fluctuations. Current P use is also highly inefficient, generating large surpluses and pollution. Global food security and aquatic ecosystems are in jeopardy if transformative action is not taken. This paper pivots from earlier (predominantly conceptual) work to develop and analyse a P transdisciplinary scenario process, assessing stakeholders potential for transformative thinking in P use in the food system. Northern Ireland, a highly livestock-intensive system, was used as case study for illustrating such process. The stakeholder engagement takes a normative stance in that it sets the explicit premise that the food system needs to be transformed and asks stakeholders to engage in a dialogue on how that transformation can be achieved. A Substance Flow Analysis of P flows and stocks was employed to construct visions for alternative futures and stimulate stakeholder discussions on system responses. These were analysed for their transformative potential using a triple-loop social learning framework. For the most part, stakeholder responses remained transitional or incremental, rather than being fundamentally transformative. The process did unveil some deeper levers that could be acted upon to move the system further along the spectrum of transformational change (e.g. changes in food markets, creation of new P markets, destocking, new types of land production and radical land use changes), providing clues of what an aspirational system could look like. Replicated and adapted elsewhere, this process can serve as diagnostics of current stakeholders thinking and potential, as well as for the identification of those deeper levers, opening up avenues to work upon for global scale transformation.

3.
Plant Physiol Biochem ; 155: 914-926, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32919099

ABSTRACT

Sustainable approaches to rice cultivation that apply less irrigation and chemical fertilisers are required to increase crop resource use efficiency. Although alternate wetting and drying (AWD) has been widely promoted as a water-saving irrigation technique, its interactions with phosphorus (P) nutrition have attracted little attention. Vegetative rice plants were grown with two phosphorus levels, fertilised (HP) or un-fertilised (LP), and either continuous flooding (CF) or AWD irrigation. Treatment effects on substrate P bioavailability (measured by Diffusive Gradients in Thin films - DGT-P), plant and substrate water relations, and foliar phytohormone status, were assessed along with P partitioning in planta. Shoot biomass and leaf area under different irrigation treatments depended on substrate P status (significant P x irrigation interaction), since LP decreased these variables under CF, but had no significant effect on plants grown under AWD. AWD maintained DGT-P concentrations and increased maximal root length, but decreased root P concentrations and P offtake. Substrate drying decreased stomatal conductance (gs) and leaf water potential (Ψleaf) but re-flooding increased gs. AWD increased foliar abscisic acid (ABA), isopentenyl adenine (iP) and 1-aminocyclopropane-1-carboxylic acid (ACC) concentrations, but decreased trans-zeatin (tZ) and gibberellin A1 (GA1) concentrations. Low P increased ACC and jasmonic acid (JA) concentrations but decreased gibberellin A4 (GA4) concentrations. Across all treatments, stomatal conductance was negatively correlated with foliar ABA concentration but positively correlated with GA1 concentration. Changes in shoot phytohormone concentrations were associated with increased water and phosphorus use efficiency (WUE and PUE) of vegetative rice plants grown under AWD.


Subject(s)
Agricultural Irrigation , Oryza/physiology , Phosphorus/physiology , Water/physiology , Fertilizers , Soil
4.
Ambio ; 49(5): 1076-1089, 2020 May.
Article in English | MEDLINE | ID: mdl-31542888

ABSTRACT

The chaotic distribution and dispersal of phosphorus (P) used in food systems (defined here as disorderly disruptions to the P cycle) is harming our environment beyond acceptable limits. An analysis of P stores and flows across Europe in 2005 showed that high fertiliser P inputs relative to productive outputs was driving low system P efficiency (38 % overall). Regional P imbalance (P surplus) and system P losses were highly correlated to total system P inputs and animal densities, causing unnecessary P accumulation in soils and rivers. Reducing regional P surpluses to zero increased system P efficiency (+ 16 %) and decreased total P losses by 35 %, but required a reduction in system P inputs of ca. 40 %, largely as fertiliser. We discuss transdisciplinary and transformative solutions that tackle the P chaos by collective stakeholder actions across the entire food value chain. Lowering system P demand and better regional governance of P resources appear necessary for more efficient and sustainable food systems.


Subject(s)
Fertilizers , Phosphorus , Agriculture , Animals , Europe , Rivers , Soil
5.
J Environ Qual ; 48(5): 1234-1246, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31589721

ABSTRACT

Unnecessary accumulation of phosphorus (P) in agricultural soils continues to degrade water quality and linked ecosystem services. Managing both soil loss and soil P fertility status is therefore crucial for eutrophication control, but the relative environmental benefits of these two mitigation measures, and the timescales over which they occur, remain unclear. To support policies toward reduced P loadings from agricultural soils, we examined the impact of soil conservation and lowering of soil test P (STP) in different regions with intensive farming (Europe, the United States, and Australia). Relationships between STP and soluble reactive P concentrations in land runoff suggested that eutrophication control targets would be more achievable if STP concentrations were kept at or below the current recommended threshold values for fertilizer response. Simulations using the Annual P Loss Estimator (APLE) model in three contrasting catchments predicted total P losses ranging from 0.52 to 0.88 kg ha depending on soil P buffering and erosion vulnerability. Drawing down STP in all catchment soils to the threshold optimum for productivity reduced catchment P loss by between 18 and 40%, but this would take between 30 and 40+ years. In one catchment, STP drawdown was more effective in reducing P loss than erosion control, but combining both strategies was always the most effective and more rapid than erosion control alone. By accounting for both soil P buffering interactions and erosion vulnerability, the APLE model quickly provided reliable information on the magnitude and time frame of P loss reduction that can be realistically expected from soil and STP management. Greater precision in the sampling, analysis, and interpretation of STP, and more technical innovation to lower agronomic optimum STP concentrations on farms, is needed to foster long-term sustainable management of soil P fertility in the future.


Subject(s)
Phosphorus , Soil , Agriculture , Australia , Ecosystem , Eutrophication
6.
Environ Int ; 130: 104924, 2019 09.
Article in English | MEDLINE | ID: mdl-31260928

ABSTRACT

Traditional extraction methods (soil solution and solvent extraction) are simple to use and conventionally employed to assess pesticide chemical form and bioavailability in soils. However, whilst convenient for regulatory testing, it has been suggested that these approaches may be too crude or are poor predictors of bioavailability, due to their arbitrary original development to detect 'total' concentration using exhaustive extraction. The diffusive gradients in thin films (DGT) technique has been widely used to measure chemical speciation in situ and shown to reliably predict bioavailability of a range of contaminants (e.g. heavy metals, radionuclides, nutrients) in soil systems, because it dynamically samples contaminants from/re-supplied to the soil solution phase. Experiments were therefore conducted with 5 soils of different properties to compare DGT and the two conventional extraction approaches for sampling atrazine (ATR) and its metabolites from soils and for predicting their uptake by maize tissues. After 23 days aging, a large proportion of total ATR was still available for solvent (acetonitrile) extraction and the major constituent in soils was parent ATR. The best correlations of total ATR concentrations in maize and total ATR measured in soil were with DGT and soil solution measurements. This is encouraging, in jointly supporting one of the established methodologies traditionally used in pesticide testing (i.e. soil solution) and a widely used method (i.e. DGT), which has been validated previously for a range of contaminants. The poorer performance of solvent extraction (a procedure widely used for pesticide testing) is perhaps to be expected, given that solvents will not truly mimic the conditions encountered in soil-plant systems.


Subject(s)
Environmental Monitoring/methods , Herbicides/metabolism , Metals, Heavy/metabolism , Soil Pollutants/chemistry , Soil/chemistry , Zea mays/metabolism , Atrazine/chemistry , Atrazine/metabolism , Biological Availability , Herbicides/chemistry , Metals, Heavy/chemistry , Time Factors
7.
Plant Methods ; 14: 97, 2018.
Article in English | MEDLINE | ID: mdl-30410567

ABSTRACT

BACKGROUND: Improving plant water use efficiency (WUE) is a major target for improving crop yield resilience to adverse climate change. Identifying genetic variation in WUE usually relies on instantaneous measurements of photosynthesis (An) and transpiration (Tr), or integrative measurements of carbon isotope discrimination, at the leaf level. However, leaf gas exchange measurements alone do not adequately represent whole plant responses, especially if evaporative demand around the plant changes. RESULTS: Here we describe a whole plant gas exchange system that can rapidly alter evaporative demand when measuring An, Tr and intrinsic WUE (iWUE) and identify genetic variation in this response. An was not limited by VPD under steady-state conditions but some wheat cultivars restricted Tr under high evaporative demand, thereby improving iWUE. These changes may be ABA-dependent, since the barley ABA-deficient mutant (Az34) failed to restrict Tr under high evaporative demand. Despite higher Tr, Az34 showed lower An than wild-type (WT) barley because of limitations in Rubisco carboxylation activity. Tr and An of Az34 were more sensitive than WT barley to exogenous spraying with ABA, which restricted photosynthesis via substrate limitation and decreasing Rubisco activation. CONCLUSIONS: Examining whole plant gas exchange responses to altered VPD can identify genetic variation in whole plant iWUE, and facilitate an understanding of the underlying mechanism(s).

8.
Plant Sci ; 251: 101-109, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27593468

ABSTRACT

There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.


Subject(s)
Plant Transpiration/genetics , Water/metabolism , Zea mays/genetics , Biomass , Genotype , Phenotype , Plant Leaves , Regression Analysis , Vapor Pressure , Zea mays/metabolism
9.
J Exp Bot ; 66(8): 2335-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25740925

ABSTRACT

To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6-6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3-6.7, reduced stomatal conductance (g(s)) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16-24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g(s): both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g(s) of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations.


Subject(s)
Abscisic Acid/metabolism , Calcium Compounds/pharmacology , Crops, Agricultural/growth & development , Gases/metabolism , Oxides/pharmacology , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Vicia faba/growth & development , Biomass , Carbon Dioxide/metabolism , Crops, Agricultural/drug effects , Hydrogen-Ion Concentration , Ions , Phosphorus/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology , Signal Transduction/drug effects , Soil , Vicia faba/drug effects , Xylem/drug effects , Xylem/metabolism
10.
J Exp Bot ; 66(8): 2133-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25697793

ABSTRACT

Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.


Subject(s)
Minerals/metabolism , Water/metabolism , Environment , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...