Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Clin Cancer Res ; 30(11): 2359-2369, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38573683

ABSTRACT

Chimeric antigen receptor (CAR) T-adoptive cell therapy has transformed the treatment of human hematologic malignancies. However, its application for the treatment of solid tumors remains challenging. An exciting avenue for advancing this field lies in the use of pet dogs, in which cancers that recapitulate the biology, immunological features, and clinical course of human malignancies arise spontaneously. Moreover, their large size, outbred genetic background, shared environment with humans, and immunocompetency make dogs ideal for investigating and optimizing CAR therapies before human trials. Here, we will outline how challenges in early clinical trials in patients with canine lymphoma, including issues related to autologous CAR T-cell manufacturing, limited CAR T-cell persistence, and tumor antigen escape, mirrored challenges observed in human CAR T trials. We will then highlight emerging adoptive cell therapy strategies currently under investigation in dogs with hematological and solid cancers, which will provide crucial safety and efficacy data on novel CAR T regimens that can be used to support clinical trials. By drawing from ongoing studies, we will illustrate how canine patients with spontaneous cancer may serve as compelling screening platforms to establish innovative CAR therapy approaches and identify predictive biomarkers of response, with a specific emphasis on solid tumors. With increased funding for canine immunotherapy studies, multi-institutional investigations are poised to generate highly impactful clinical data that should translate into more effective human trials, ultimately benefiting both human and canine cancer patients.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Animals , Dogs , Humans , Dog Diseases/therapy , Dog Diseases/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Clinical Trials, Veterinary as Topic
2.
Cell Rep Med ; 4(10): 101241, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37852175

ABSTRACT

Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Natural Killer T-Cells , Humans , Dogs , Animals , Transplantation, Homologous , Biomarkers
3.
Blood Adv ; 7(14): 3416-3430, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37058474

ABSTRACT

A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Skin Neoplasms , Adult , Humans , Animals , Mice , Receptors, CCR4/metabolism , T-Lymphocytes, Regulatory
4.
Front Vet Sci ; 9: 824982, 2022.
Article in English | MEDLINE | ID: mdl-35898541

ABSTRACT

Background: Chimeric antigen receptor-T (CAR-T) cells have transformed the treatment of human B cell malignancies. With the advent of CAR-T therapy, specific and in some cases severe toxicities have been documented with cytokine release syndrome (CRS) being the most frequently reported. As dogs develop tumors spontaneously and in an immunocompetent setting, they provide a unique translational opportunity to further investigate the activity and toxicities associated with CAR-T therapy. Although various adoptive cellular therapy (ACT) trials have been documented and several more are ongoing in canine oncology, CRS has not been comprehensively described in canine cancer patients. Case Presentation: Here we present the clinical and serologic changes in a dog treated with autologous CAR-T for relapsed B cell lymphoma that presented with lethargy and fever 3 days following CAR-T. Multiplexed serum cytokine profiling revealed increases in key cytokines implicated in human CRS including IL-6, MCP-1, IFNγ and IL-10 at or shortly after peak CAR-T levels in vivo. Conclusion: The observations noted in this case report are consistent with CRS development following CAR-T therapy in a canine patient. The dog represents a compelling model to study the pathophysiology of CRS and pre-clinically screen novel therapeutics to prevent and treat this life-threatening condition in the setting of a complex and naturally evolved immune system.

5.
MAbs ; 13(1): 2004638, 2021.
Article in English | MEDLINE | ID: mdl-34856888

ABSTRACT

The immune checkpoint inhibitor (ICI) ipilimumab has revolutionized the treatment of patients with different cancer histologies, including melanoma, renal cell carcinoma, and non-small cell lung carcinoma. However, only a subset of patients shows dramatic clinical responses to treatment. Despite intense biomarker discovery efforts linked to clinical trials using CTLA4 checkpoint blockade, no single prognostic correlate has emerged as a valid predictor of outcome. Client-owned, immune competent, pet dogs develop spontaneous tumors that exhibit similar features to human cancers, including shared chromosome aberrations, molecular subtypes, immune signatures, tumor heterogeneity, metastatic behavior, and response to chemotherapy. As such, they represent a valuable parallel patient population in which to investigate novel predictive biomarkers and rational therapeutic ICI combinations. However, the lack of validated, non-immunogenic, canine ICIs for preclinical use hinders this comparative approach. To address this, fully canine single-chain variable fragments (scFvs) that bind canine CTLA4 were isolated from a comprehensive canine scFv phage display library. A lead candidate for clinical development was selected based on its subnanomolar binding affinity to canine CTLA4 and its ability to prevent CTLA4 binding to CD80/CD86 and promote T cell proliferation and effector function. In vivo mouse studies revealed pharmacokinetics similar to isotype control IgG with no evidence of short-term adverse effects. This work paves the way for in vivo analysis of the first fully canine, anti-canine CTLA4 antibody to promote anti-tumor immunity in dogs with immune-responsive cancers and provide an important comparative tool to investigate correlative biomarkers of response and mechanisms of resistance to CTLA4 checkpoint inhibition.


Subject(s)
Lung Neoplasms , Melanoma , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen , Dogs , Humans , Mice , Translational Research, Biomedical
6.
STAR Protoc ; 2(4): 100905, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34746864

ABSTRACT

Immunocompetent pet dogs develop spontaneous, human-like cancers, representing a parallel patient population for the investigation of chimeric antigen receptor (CAR) therapies. We have optimized a retrovirus-based protocol to efficiently CAR transduce primary T cells from healthy and tumor-bearing dogs. While transduction efficiencies and CAR-T expansion vary among dogs, CAR expression is typically higher and more stable compared with previous protocols, thus enabling human and comparative oncology researchers to use the dog as a pre-clinical model for human CAR-T cell research. For complete details on the use and execution of this protocol, please refer to Panjwani et al. (2020).


Subject(s)
Genetic Engineering/methods , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/physiology , Animals , Cells, Cultured , Dogs , Neoplasms/therapy , Neoplasms/veterinary
8.
Cancer Cell ; 34(4): 596-610.e11, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30300581

ABSTRACT

Chimeric antigen receptor anti-CD19 (CAR19)-T cell immunotherapy-induced clinical remissions in CD19+ B cell lymphomas are often short lived. We tested whether CAR19-engineering of the CD1d-restricted invariant natural killer T (iNKT) cells would result in enhanced anti-lymphoma activity. CAR19-iNKT cells co-operatively activated by CD1d- and CAR19-CD19-dependent interactions are more effective than CAR19-T cells against CD1d-expressing lymphomas in vitro and in vivo. The swifter in vivo anti-lymphoma activity of CAR19-iNKT cells and their enhanced ability to eradicate brain lymphomas underpinned an improved tumor-free and overall survival. CD1D transcriptional de-repression by all-trans retinoic acid results in further enhanced cytotoxicity of CAR19-iNKT cells against CD19+ chronic lymphocytic leukemia cells. Thus, iNKT cells are a highly efficient platform for CAR-based immunotherapy of lymphomas and possibly other CD1d-expressing cancers.


Subject(s)
Antigens, CD1d/genetics , Cell- and Tissue-Based Therapy , Lymphoma/drug therapy , Natural Killer T-Cells/cytology , Animals , Antigens, CD19/genetics , Antigens, CD19/immunology , Antigens, CD1d/immunology , Humans , Immunotherapy/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoma/immunology , Mice , Natural Killer T-Cells/immunology
9.
Leuk Lymphoma ; 59(9): 2040-2055, 2018 09.
Article in English | MEDLINE | ID: mdl-29165008

ABSTRACT

Chimeric antigen receptor T cell (CART) therapy has dramatically changed the therapeutic prospects for B cell malignancies. Over the last decade CD19-redirected CART have demonstrated the ability to induce deep, long-lasting remissions and possibly cure patients with relapsing B cell neoplasms. Such impressive results with CART19 fostered efforts to expand this technology to other incurable malignancies that naturally do not express CD19, such as acute myeloid leukemia (AML), Hodgkin lymphoma (HL) and multiple myeloma (MM). However, to reach this goal, several hurdles have to be overcome, in particular: (i) the apparent lack of suitable targets as effective as CD19; (ii) the immunosuppressive tumor microenvironment; (iii) intra-tumoral heterogeneity and antigen-negative relapses. Therefore, new strategies that allow safer and more potent CART platforms are under development and may provide grounds for new exciting breakthroughs in the field.


Subject(s)
Hematologic Neoplasms/therapy , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Hematologic Neoplasms/immunology , Hodgkin Disease/immunology , Hodgkin Disease/therapy , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Recombinant Fusion Proteins/immunology , T-Lymphocytes/immunology
10.
Br J Haematol ; 173(3): 350-64, 2016 05.
Article in English | MEDLINE | ID: mdl-26953076

ABSTRACT

Despite encouraging therapeutic advances, multiple myeloma (MM) remains an incurable malignancy. The exciting results of chimaeric antigen receptor (CAR)-based immunotherapy in CD19(+) B-cell malignancies have spurred a great interest in extending the use of the CAR technology to other cancers, including MM. Availability of a specific, tumour-restricted antigen is crucial for the design of successful antibody-based CAR therapy. However, in MM, as in other malignancies, the relative dearth of such antigens-targets represents the main obstacle for the wider pre-clinical development and clinical application of the CAR technology. Here we provide an overview of the current progress and future promises of CAR technology in MM therapy. We highlight that, owing to its complexity, phenotypic and functional heterogeneity and the impact of the microenvironment, MM poses several challenges for CAR-based therapeutic approaches. Nevertheless, for the same reasons, MM can serve as a paradigm for better understanding, optimization and overall improvement of the CAR technology for the benefit of cancer and myeloma patients.


Subject(s)
Immunotherapy/methods , Multiple Myeloma/drug therapy , Antigens, Neoplasm/immunology , Humans , Protein Engineering , Receptors, Antigen/genetics , Receptors, Antigen/therapeutic use
11.
Blood ; 123(5): 697-705, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24335499

ABSTRACT

The bromodomain and extraterminal (BET) protein BRD2-4 inhibitors hold therapeutic promise in preclinical models of hematologic malignancies. However, translation of these data to molecules suitable for clinical development has yet to be accomplished. Herein we expand the mechanistic understanding of BET inhibitors in multiple myeloma by using the chemical probe molecule I-BET151. I-BET151 induces apoptosis and exerts strong antiproliferative effect in vitro and in vivo. This is associated with contrasting effects on oncogenic MYC and HEXIM1, an inhibitor of the transcriptional activator P-TEFb. I-BET151 causes transcriptional repression of MYC and MYC-dependent programs by abrogating recruitment to the chromatin of the P-TEFb component CDK9 in a BRD2-4-dependent manner. In contrast, transcriptional upregulation of HEXIM1 is BRD2-4 independent. Finally, preclinical studies show that I-BET762 has a favorable pharmacologic profile as an oral agent and that it inhibits myeloma cell proliferation, resulting in survival advantage in a systemic myeloma xenograft model. These data provide a strong rationale for extending the clinical testing of the novel antimyeloma agent I-BET762 and reveal insights into biologic pathways required for myeloma cell proliferation.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzodiazepines/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Multiple Myeloma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzodiazepines/pharmacology , Cell Cycle Checkpoints/drug effects , Down-Regulation/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-myc/genetics , RNA-Binding Proteins/genetics , Transcription Factors , Transcriptional Activation/drug effects , Tumor Cells, Cultured
12.
Curr Opin Hematol ; 20(2): 163-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334193

ABSTRACT

PURPOSE OF REVIEW: In this review, we analyze some of the topical issues in the clinical management of chronic myeloid leukaemia (CML). RECENT FINDINGS: In recent years, the management of CML patients has increased in complexity as molecular monitoring has brought to the clinical scene new therapeutic targets and the second-generation tyrosine kinase inhibitors have been licensed for first-line use. SUMMARY: In this article, we will try to answer some of the questions that a practising physician may face in clinical practice, such as: What should be the aim of therapy? What is the best front-line therapy? Which patients should receive an allogeneic stem cell transplant?


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , Humans , Molecular Targeted Therapy , Stem Cell Transplantation , Transplantation, Homologous
13.
Haematologica ; 95(8): 1308-16, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20534700

ABSTRACT

BACKGROUND: Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-kappaB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. DESIGN AND METHODS: We evaluated deferasirox activity on nuclear factor-kappaB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 muM deferasirox for 18h. RESULTS: Nuclear factor-kappaB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. CONCLUSIONS: Nuclear factor-kappaB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies.


Subject(s)
Benzoates/pharmacology , Iron/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species/antagonists & inhibitors , Triazoles/pharmacology , Aged , Aged, 80 and over , Apoptosis/drug effects , Blotting, Western , Deferasirox , Electrophoretic Mobility Shift Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Iron/metabolism , Iron Chelating Agents/pharmacology , K562 Cells , Leukemia/metabolism , Leukemia/pathology , Male , Middle Aged , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , NF-kappa B/metabolism , Protein Binding/drug effects , Reactive Oxygen Species/metabolism
14.
Expert Opin Emerg Drugs ; 15(2): 175-84, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20201747

ABSTRACT

IMPORTANCE OF THE FIELD: The deregulated tyrosine kinase activity of BCR-ABL has been demonstrated to be necessary and sufficient to maintain leukemia phenotype of chronic myeloid leukemia (CML) which, therefore, represents a unique model for the development of molecular targeted therapy and the first disease in which the tyrosine kinase inhibitors (TKIs) completely changed the therapeutical approach. The impressive results of TKIs in this model have been overshadowed by the development of clinical resistance. AREAS COVERED IN THIS REVIEW: This review focuses on clinical results with imatinib therapy and second generation TKIs. Furthermore, a summary of the guidelines for the management of TKI resistant patients is provided together with a description of the new drugs in clinical or preclinical phases which are developing to overcome resistance. WHAT THE READER WILL GAIN: Future perspective for the 'cure' of CML patients and new drugs designed for this purpose are suggested. TAKE HOME MESSAGE: CML therapy has dramatically changed in the last few years due to the introduction of targeted therapy. Studies on new drugs targeting different pathways other than BCR-ABL are ongoing to improve the clinical results.


Subject(s)
Antineoplastic Agents/therapeutic use , Drugs, Investigational/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/adverse effects , Clinical Trials as Topic , Drug Design , Drug Resistance, Neoplasm , Drugs, Investigational/adverse effects , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Practice Guidelines as Topic , Protein Kinase Inhibitors/adverse effects , Protein-Tyrosine Kinases/metabolism , Treatment Outcome
17.
Rev. bras. hematol. hemoter ; 30(supl.2): 24-29, jun. 2008. tab
Article in English | LILACS | ID: lil-496440

ABSTRACT

The introduction of the BCR-ABL kinase inhibitor, imatinib mesylate (Gleevec®, Novartis) led to significant changes in the treatment of chronic myeloid leukaemia (CML) patients. However, despite the impressive percentage of responding patients, some CML cases, particularly those in advanced phases of the disease, show primary resistance or relapse after the initial response. The second-generation BCR-ABL inhibitors nilotinib (Tasigna®, Novartis) and dasatinib (Sprycel®, Bristol-Myers Squibb) have shown significant activity in clinical trials in patients who failed imatinib therapy, but these agents are still incapable of inhibiting the T315I mutant of Bcr-Abl and present partial activity in advanced phases of CML. The acquired biological notions of the mechanisms of tyrosine kinase inhibitor (TKI) resistance has led to the development of new compounds, some of which have shown encouraging preliminary results in clinical trials, even against T315I mutants. In this paper we discuss the new emerging therapies which may overcome TKI resistance in CML patients.


A introdução do inibidor de tirosino quinase BCR-ABL mesilato de imatinibe (Glivec®, Novartis) levou a significantes mudanças no tratamento da LMC. Entretanto, a despeito de impressionante porcentagem de pacientes que respondem, alguns casos de LMC, particularmente em fases avançadas da doença mostram resistência primaria ou recidivas após terapêutica inicial. Inibidores de tirosino quinases de segunda geração como o nilotinibe (Tasigna®, Novartis) e o dasatinibe (Sprycel®, Bristol Myers Squibb) têm mostrado significante atividade nos estudos clínicos em paciente onde o imatinibe falhou. Porém, estes agentes não são capazes de inibir a mutação T315I do Bcr-Abl e apresentam atividade parcial em fases avançadas da LMC. As noções biológicas adquiridas sobre os mecanismos de resistência aos inibidores de TK levaram ao desenvolvimento de novos compostos alguns dos quais têm resultados preliminares encorajadores incluindo a mutação T315I. Neste trabalho nós discutimos os novos agentes emergentes e qual o potencial poderão atingir para ultrapassar a resistência aos inibidores de TK em pacientes com LMC.


Subject(s)
Humans , Drug Resistance , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein-Tyrosine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...