Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
2.
J Hepatol ; 73(5): 1131-1143, 2020 11.
Article in English | MEDLINE | ID: mdl-32422221

ABSTRACT

BACKGROUND & AIMS: Donation after brain death (DBD) grafts are associated with reduced graft quality and function post liver transplantation (LT). We aimed to elucidate i) the impact of FGF15 levels on DBD grafts; ii) whether this impact resulted from altered intestinal FXR-FGF15; iii) whether administration of FGF15 to donors after brain death could confer a benefit on graft function post LT; and iv) whether FGF15 affects bile acid (BA) accumulation. METHODS: Steatotic and non-steatotic grafts from DBD donors and donors without brain death were transplanted in rats. FGF15 was administered alone or combined with either a BA (cholic acid) or a YAP inhibitor. RESULTS: Brain death induced intestinal damage and downregulation of FXR. The resulting reduced intestinal FGF15 was associated with low hepatic FGF15 levels, liver damage and regenerative failure. Hepatic FGFR4-Klb - the receptor for FGF15 - was downregulated whereas CYP7A1 was overexpressed, resulting in BA accumulation. FGF15 administration to DBD donors increased hepatic FGFR4-Klb, reduced CYP7A1 and normalized BA levels. The benefit of FGF15 on liver damage was reversed by cholic acid, whereas its positive effect on regeneration was maintained. YAP signaling in DBD donors was activated after FGF15 treatment. When a YAP inhibitor was administered, the benefits of FGF15 on regeneration were abolished, whereas its positive effect on hepatic damage remained. Neither the Hippo-YAP-BA nor the BA-IQGAP1-YAP axis was involved in the benefits of FGF15. CONCLUSION: Alterations in the gut-liver axis contribute to the reduced quality of DBD grafts and the associated pathophysiology of LT. FGF15 pre-treatment in DBD donors protected against damage and promoted cell proliferation. LAY SUMMARY: After brain death, potential liver donors have reduced intestinal FXR, which is associated with reduced intestinal, circulatory and hepatic levels of FGF15. A similar reduction in the cell-surface receptor complex Fgfr4/Klb is observed, whereas CYP7A1 is overexpressed; together, these molecular events result in the dangerous accumulation of bile acids, leading to damage and regenerative failure in brain dead donor grafts. Herein, we demonstrate that when such donors receive appropriate doses of FGF15, CYP7A1 levels and hepatic bile acid toxicity are reduced, and liver regeneration is promoted.


Subject(s)
Bile Acids and Salts , Brain Death/metabolism , Fibroblast Growth Factors , Liver Transplantation , Liver/metabolism , Animals , Bile Acids and Salts/blood , Bile Acids and Salts/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Delayed Graft Function/metabolism , Delayed Graft Function/pathology , Delayed Graft Function/prevention & control , Down-Regulation , Fatty Liver/metabolism , Fatty Liver/pathology , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/metabolism , Fragile X Mental Retardation Protein/metabolism , Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Liver Regeneration/drug effects , Liver Transplantation/adverse effects , Liver Transplantation/methods , Protective Agents/administration & dosage , Protective Agents/metabolism , Rats , Signal Transduction , YAP-Signaling Proteins
3.
Cells ; 8(12)2019 12 14.
Article in English | MEDLINE | ID: mdl-31847428

ABSTRACT

We elucidate the relevance of fibroblast growth factor 15 (FGF15) in liver transplantation (LT) using rats with both steatotic and non-steatotic organs from donors after cardiocirculatory death (DCD). Compared to LT from non-DCDs, the induction of cardiocirculatory death (CD) increases hepatic damage, proliferation, and intestinal and circulatory FGF15. This is associated with high levels of FGF15, bilirubin and bile acids (BAs), and overexpression of the enzyme involved in the alternative BA synthesis pathway, CYP27A1, in non-steatotic livers. Furthermore, CD activates the proliferative pathway, Hippo/YAP, in these types of liver. Blocking FGF15 action in LT from DCDs does not affect CYP27A1 but causes an overexpression of CYP7A, an enzyme from the classic BA synthesis pathway, and this is related to further accumulation of BAs and exacerbated damage. FGF15 inhibition also impairs proliferation without changing Hippo/YAP. In spite of worse damage, steatosis prevents a proliferative response in livers from DCDs. In steatotic grafts, CD does not modify CYP7A1, CYP27A1, BA, or the Hippo/YAP pathway, and FGF15 is not involved in damage or proliferation. Thus, endogenous FGF15 protects against BA accumulation and damage and promotes regeneration independently of the Hippo/YAP pathway, in non-steatotic LT from DCDs. Herein we show a minor role of FGF15 in steatotic LT from DCDs.


Subject(s)
Fibroblast Growth Factors/metabolism , Liver/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Bile Acids and Salts/metabolism , Cell Proliferation/drug effects , Cholesterol 7-alpha-Hydroxylase/metabolism , Fatty Liver/metabolism , Fibroblast Growth Factors/genetics , Heart Failure/metabolism , Liver/pathology , Liver Transplantation/methods , Male , Protein Serine-Threonine Kinases , Rats , Rats, Zucker , Reperfusion Injury/metabolism , Signal Transduction/drug effects , YAP-Signaling Proteins
4.
Transplantation ; 103(7): 1349-1359, 2019 07.
Article in English | MEDLINE | ID: mdl-31241554

ABSTRACT

BACKGROUND: We evaluated the potential dysfunction caused by changes in growth hormone (GH) levels after brain death (BD), and the effects of modulating GH through exogenous epidermal growth factor (EGF) in steatotic and nonsteatotic grafts. METHODS: Steatotic and nonsteatotic grafts from non-BD and BD rat donors were cold stored for 6 hours and transplanted to live rats. Administration of GH and EGF and their underlying mechanisms were characterized in recipients of steatotic and nonsteatotic grafts from BD donors maintained normotensive during the 6 hours before donation. Circulating and hepatic GH and EGF levels, hepatic damage, and regeneration parameters were evaluated. Recipient survival was monitored for 14 days. Somatostatin, ghrelin, and GH-releasing hormones that regulate GH secretion from the anterior pituitary were determined. The survival signaling pathway phosphoinositide-3-kinase/protein kinase B that regulates inflammation (suppressors of cytokine signaling, high-mobility group protein B1, oxidative stress, and neutrophil accumulation) was evaluated. RESULTS: BD reduced circulating GH and increased GH levels only in steatotic livers. GH administration exacerbated adverse BD-associated effects in both types of graft. Exogenous EGF reduced GH in steatotic livers, thus activating cell proliferation and survival signaling pathways, ultimately reducing injury and inflammation. However, EGF increased GH in nonsteatotic grafts, which exacerbated damage. The benefits of EGF for steatotic grafts were associated with increased levels of somatostatin, a GH inhibitor, whereas the deleterious effect on nonsteatotic grafts was exerted through increased amounts of ghrelin, a GH stimulator. CONCLUSIONS: GH treatment is not appropriate in rat liver transplant from BD donors, whereas EGF (throughout GH inhibition) protects only in steatotic grafts.


Subject(s)
Brain Death/blood , Epidermal Growth Factor/administration & dosage , Fatty Liver/metabolism , Growth Hormone/administration & dosage , Liver Transplantation , Liver/drug effects , Liver/surgery , Animals , Brain Death/pathology , Epidermal Growth Factor/blood , Epidermal Growth Factor/toxicity , Fatty Liver/pathology , Growth Hormone/blood , Growth Hormone/toxicity , Liver/metabolism , Liver/pathology , Male , Rats, Zucker , Time Factors
5.
J Mol Med (Berl) ; 97(9): 1299-1314, 2019 09.
Article in English | MEDLINE | ID: mdl-31254006

ABSTRACT

We examined the effects of VEGFA on damage and regeneration in steatotic and non-steatotic livers of rats submitted to PH under I/R, and characterized the underlying mechanisms involved. Our results indicated that VEGFA levels were decreased in both steatotic and non-steatotic livers after surgery. The administration of VEGFA increased VEGFA levels in non-steatotic livers, reducing the incidence of post-operative complications following surgery through the VEGFR2-Wnt2 pathway, independently of Id1. Unexpectedly, administration of VEGFA notably reduced VEGFA levels in steatotic livers, exacerbating damage and regenerative failure. After exogenous administration of VEGFA in steatotic animals, circulating VEGFA is sequestered by the high circulating levels of sFlt1 released from adipose tissue. Under such conditions, VEGFA cannot reach the steatotic liver to exert its effects. Consequently, the concomitant administration of VEGFA and an antibody against sFlt1 was required to avoid binding of sFlt1 to VEGFA. This was associated with high VEGFA levels in steatotic livers and protection against damage and regenerative failure, plus improvement in the survival rate via up-regulation of PI3K/Akt independently of the Id1-Wnt2 pathway. The current study highlights the different effects and signaling pathways of VEGFA in liver surgery requiring PH and I/R based in the presence of steatosis. KEY MESSAGES: VEGFA administration improves PH+I/R injury only in non-steatotic livers of Ln animals. VEGFA benefits are exerted through the VEGFR2-Wnt2 pathway in non-steatotic livers. In Ob rats, exogenous VEGFA is sequestered by circulating sFlt1, exacerbating liver damage. Therapeutic combination of VEGFA and anti-sFlt1 is required to protect steatotic livers. VEGFA+anti-sFlt1 treatment protects steatotic livers through a VEGFR2-PI3K/Akt pathway.


Subject(s)
Ischemia/metabolism , Liver/metabolism , Reperfusion Injury/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Hepatectomy/methods , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Rats, Zucker , Signal Transduction/physiology , Survival Rate , Up-Regulation/physiology , Vascular Endothelial Growth Factor Receptor-1/metabolism , Wnt2 Protein/metabolism
6.
Nutrients ; 11(3)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823376

ABSTRACT

Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This "wasting" of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism. Insulin increased both glucose uptake and the flow of carbon through glycolysis and lipogenesis. Lactate excretion was related to medium glucose levels, which agrees with the purported role of disposing excess (circulating) glucose. When medium glucose was low, most basal glycerol came from lipolysis, but when glucose was high, release of glycerol via breakup of glycerol-3P was predominant. Although insulin promotes lipogenesis, it also limited the synthesis of glycerol-3P from glucose and its incorporation into acyl-glycerols. We assume that this is a mechanism of adipose tissue defense to avoid crippling fat accumulation which has not yet been described.


Subject(s)
Glycerol/metabolism , Insulin/pharmacology , Lipogenesis/physiology , Triglycerides/biosynthesis , Animals , Male , Rats , Rats, Wistar
7.
Adipocyte ; 8(1): 61-76, 2019 12.
Article in English | MEDLINE | ID: mdl-30676233

ABSTRACT

White adipose tissue (WAT) nucleated stromal cells (NSC) play important roles in regulation, defense, regeneration and metabolic control. In WAT sites, the proportions and functions of NSC change under diverse physiological or pathologic conditions. We had previously observed the massive anaerobic wasting of glucose to lactate and glycerol in rat epididymal adipocytes. To test site variability, and whether the adipocyte extensive anaerobic metabolism of glucose was found in NSC, we analyzed, in parallel, subcutaneous, mesenteric and epididymal WAT of male adult Wistar rats. Adipocytes and NSC fractions, were isolated, counted and incubated (as well as red blood cells: RBC) with glucose, and their ability to use glucose and produce lactate, glycerol, and free fatty acids was measured. Results were computed taking into account the number of cells present in WAT samples. Cell numbers were found in proportions close to 1:13:100 (respectively, for adipocytes, NSC and RBC) but their volumes followed a reversed pattern: 7,500:10:1. When counting only non-fat cell volumes, the ratios changed dramatically to 100:10:1. RBC contribution to lactate production was practically insignificant. In most samples, NSC produced more lactate than adipocytes did, but only adipocytes secreted glycerol (and fatty acids in smaller amounts). Glucose consumption was also highest in NSC, especially in mesenteric WAT. The heterogeneous NSC showed a practically anaerobic metabolism (like that already observed in adipocytes). Thus, NSC quantitative production of lactate markedly contributed (i.e. more than adipocytes) to WAT global use (wasting) of glucose. We also confirmed that glucose-derived glycerol is exclusively produced by adipocytes.


Subject(s)
Adipocytes/metabolism , Lactic Acid/metabolism , Stromal Cells/metabolism , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Adiposity , Animals , Cell Line , Cells, Cultured , Fatty Acids, Nonesterified , Glucose/metabolism , Male , Obesity/metabolism , Rats , Rats, Wistar
8.
PeerJ ; 6: e5440, 2018.
Article in English | MEDLINE | ID: mdl-30128201

ABSTRACT

BACKGROUND: Adult rat epididymal adipocytes are able to convert large amounts of glucose to lactate and glycerol. However, fatty acid efflux is much lower than that expected from glycerol levels if they were the product of lipolysis. Use of glucose for lipogenesis is limited, in contrast with the active glycolysis-derived lactate (and other 3-carbon substrates). In this study, we analyzed whether white adipose tissue (WAT) site and sex affect these processes. METHODS: Mature adipocytes from perigonadal, mesenteric and subcutaneous WAT of female and male rats were isolated, and incubated with 7 or 14 mM glucose during 1 or 2 days. Glucose consumption, metabolite efflux and gene expression of glycolytic and lipogenesis-related genes were measured. RESULTS: The effects of medium initial glucose concentration were minimal on most parameters studied. Sex-induced differences that were more extensive; however, the most marked, distinct, effects between WAT sites, were dependent on the time of incubation. In general, the production of lactate was maintained during the incubation, but glycerol release rates increased with time, shifting from a largely glycolytic origin to its triacylglycerol (TAG) lipolytic release. Glycerol incorporation was concurrent with increased TAG turnover: lipolytic glycerol was selectively secreted, while most fatty acids were recycled again into TAG. Fatty acid efflux increased with incubation, but was, nevertheless, minimal compared with that of glycerol. Production of lactate and glycerol from glucose were maximal in mesenteric WAT. DISCUSSION: Female rats showed a higher adipocyte metabolic activity than males. In mesenteric WAT, gene expression (and substrate efflux) data suggested that adipocyte oxidation of pyruvate to acetyl-CoA was higher in females than in males, with enhanced return of oxaloacetate to the cytoplasm for its final conversion to lactate. WAT site differences showed marked tissue specialization-related differences. Use of glucose for lipogenesis was seriously hampered over time, when TAG turnover-related lipolysis was activated. We postulate that these mechanisms may help decrease glycaemia and fat storage, producing, instead, a higher availability of less-regulated 3-carbon substrates, used for energy elsewhere.

9.
Adipocyte ; 7(3): 204-217, 2018.
Article in English | MEDLINE | ID: mdl-29708458

ABSTRACT

White adipose tissue can metabolize large amounts of glucose to glycerol and lactate. We quantitatively traced glucose label to lactate, glycerol and fats in primary cultures of mature rat epididymal adipocytes. Cells were incubated with 7/14 mM 14C-glucose for 24/48 h. Medium metabolites and the label in them and in cells' components were measured. Gene expression analysis was done using parallel incubations. Glucose concentration did not affect lactate efflux and most parameters. Glycerol efflux increased after 24 h, coinciding with arrested lipogenesis. Steady production of lactate was maintained in parallel to glycerogenesis. Changes in adipocyte metabolism were paralleled by gene expression. Glucose use for lipogenesis was minimal, and stopped (24 h-onwards) when glycerol efflux increased because of triacylglycerol turnover. Lactate steady efflux showed that anaerobic glycolysis was the main adipocyte source of energy. We can assume that adipose tissue may play a quantitatively significant effect on glycaemia, returning 3C fragments thus minimizing lipogenesis.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Epididymis/cytology , Glucose/metabolism , Glycerol/metabolism , Lactic Acid/metabolism , Lipogenesis , Animals , Carbon Radioisotopes , Cells, Cultured , Male , Rats , Rats, Wistar
10.
Sci Rep ; 7(1): 8983, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827624

ABSTRACT

White adipose tissue (WAT) produces large amounts of lactate and glycerol from glucose. We used mature epididymal adipocytes to analyse the relative importance of glycolytic versus lipogenic glycerol in adipocytes devoid of external stimuli. Cells were incubated (24/48 h) with 7/14 mM glucose; half of the wells contained 14C-glucose. We analysed glucose label fate, medium metabolites, and the expression of key genes coding for proteins controlling glycerol metabolism. The effects of initial glucose levels were small, but time of incubation increased cell activity and modified its metabolic focus. The massive efflux of lactate was uniform with time and unrelated to glucose concentration; however, glycerol-3P synthesis was higher in the second day of incubation, being largely incorporated into the glycerides-glycerol fraction. Glycerophosphatase expression was not affected by incubation. The stimulation of glycerogenic enzymes' expression was mirrored in lipases. The result was a shift from medium glycolytic to lipolytic glycerol released as a consequence of increased triacylglycerol turnover, in which most fatty acids were recycled. Production of glycerol seems to be an important primary function of adipocytes, maintained both by glycerogenesis and acyl-glycerol turnover. Production of 3C fragments may also contribute to convert excess glucose into smaller, more readily usable, 3C metabolites.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Glycerides/metabolism , Glycerol/metabolism , Animals , Biological Transport , Carbon Radioisotopes/analysis , Cells, Cultured , Glycolysis , Isotope Labeling , Lactic Acid/metabolism , Lipolysis , Male , Rats, Wistar , Time Factors
11.
PeerJ ; 4: e2725, 2016.
Article in English | MEDLINE | ID: mdl-27917316

ABSTRACT

BACKGROUND: White adipose tissue (WAT) is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. EXPERIMENTAL DESIGN: Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes) were measured. The presence of non-nucleated cells (erythrocytes) was also estimated. RESULTS: Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70-75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells) 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. CONCLUSIONS: The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the "live cell mass" of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination). These data translate (with respect to the actual "live cytoplasm" size) into an extremely high metabolic activity, which make WAT an even more significant agent in the control of energy metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL