Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
NPJ Digit Med ; 7(1): 164, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902336

ABSTRACT

The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.

2.
Br J Cancer ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866963

ABSTRACT

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with Stage III ovarian cancer following interval cytoreductive surgery (CRS). Optimising patient selection is essential to maximise treatment efficacy and avoid overtreatment. This study aimed to identify biomarkers that predict HIPEC benefit by analysing gene signatures and cellular composition of tumours from participants in the OVHIPEC-1 trial. METHODS: Whole-transcriptome RNA sequencing data were retrieved from high-grade serous ovarian cancer (HGSOC) samples from 147 patients obtained during interval CRS. We performed differential gene expression analysis and applied deconvolution methods to estimate cell-type proportions in bulk mRNA data, validated by histological assessment. We tested the interaction between treatment and potential predictors on progression-free survival using Cox proportional hazards models. RESULTS: While differential gene expression analysis did not yield any predictive biomarkers, the cellular composition, as characterised by deconvolution, indicated that the absence of macrophages and the presence of B cells in the tumour microenvironment are potential predictors of HIPEC benefit. The histological assessment confirmed the predictive value of macrophage absence. CONCLUSION: Immune cell composition, in particular macrophages absence, may predict response to HIPEC in HGSOC and these hypothesis-generating findings warrant further investigation. CLINICAL TRIAL REGISTRATION: NCT00426257.

3.
mBio ; 15(6): e0341223, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38747635

ABSTRACT

Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.


Subject(s)
Intrinsically Disordered Proteins , Protozoan Proteins , Theileria annulata , Theileria annulata/genetics , Theileria annulata/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Animals , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Cattle , Host-Parasite Interactions , Macrophages/parasitology , Theileriasis/parasitology , Theileriasis/metabolism , Cell Nucleus/metabolism
4.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789420

ABSTRACT

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Female , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Mice, Nude
5.
Vet Comp Oncol ; 22(2): 295-302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659202

ABSTRACT

Canine urothelial carcinoma (UC) and prostate carcinoma (PC) frequently exhibit the BRAFV595E mutation, akin to the BRAFV600E mutation common in various human cancers. Since the initial discovery of the BRAF mutation in canine cancers in 2015, PCR has been the standard method for its detection in both liquid and tissue biopsies. Considering the similarity between the canine BRAFV595E and human BRAFV600E mutations, we hypothesized that immunohistochemistry (IHC) using a BRAFV600E-specific antibody could effectively identify the canine mutant BRAFV595E protein. We tested 122 canine UC (bladder n = 108, urethra n = 14), 21 PC, and benign tissue using IHC and performed digital droplet PCR (ddPCR) on all 122 UC and on 14 IHC positive PC cases. The results from ddPCR and IHC were concordant in 99% (135/136) of the tumours. Using IHC, BRAFV595E was detected in 72/122 (59%) UC and 14/21 (65%) PC. Staining of all benign bladder and prostate tissues was negative. If present, mutant BRAF staining was homogenous, with rare intratumour heterogeneity in three (4%) cases of UC. Additionally, the BRAFV595E mutation was more prevalent in tumours with urothelial morphology, and less common in glandular PC or UC with divergent differentiation. This study establishes that BRAFV600-specific IHC is a reliable and accurate method for detecting the mutant BRAFV595E protein in canine UC and PC. Moreover, the use of IHC, especially with tissue microarrays, provides a cost-efficient test for large-scale screening of canine cancers for the presence of BRAF mutations. This advancement paves the way for further research to define the prognostic and predictive role of this tumour marker in dogs and use IHC to stratify dogs for the treatment with BRAF inhibitors.


Subject(s)
Dog Diseases , Immunohistochemistry , Mutation , Prostatic Neoplasms , Proto-Oncogene Proteins B-raf , Urinary Bladder Neoplasms , Dogs , Animals , Dog Diseases/genetics , Dog Diseases/diagnosis , Dog Diseases/pathology , Proto-Oncogene Proteins B-raf/genetics , Male , Prostatic Neoplasms/veterinary , Prostatic Neoplasms/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Immunohistochemistry/veterinary , Urinary Bladder Neoplasms/veterinary , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/diagnosis , Female , Carcinoma/veterinary , Carcinoma/genetics , Carcinoma/pathology , Carcinoma/metabolism , Carcinoma/diagnosis , Carcinoma, Transitional Cell/veterinary , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/diagnosis , Carcinoma, Transitional Cell/pathology
6.
Trends Cancer ; 10(5): 393-406, 2024 May.
Article in English | MEDLINE | ID: mdl-38429144

ABSTRACT

The persistence of drug-sensitive tumors poses a significant challenge in cancer treatment. The concept of bacterial persisters, which are a subpopulation of bacteria that survive lethal antibiotic doses, is frequently used to compare to residual disease in cancer. Here, we explore drug tolerance of cancer cells and bacteria. We highlight the fact that bacteria, in contrast to cancer cells, have been selected for survival at the population level and may therefore possess contingency mechanisms that cancer cells lack. The precise mechanisms of drug-tolerant cancer cells and bacterial persisters are still being investigated. Undoubtedly, by understanding common features as well as differences, we, in the cancer field, can learn from microbiology to find strategies to eradicate persisting cancer cells.


Subject(s)
Anti-Bacterial Agents , Bacteria , Neoplasms , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacteria/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasm, Residual , Neoplasms/drug therapy , Neoplasms/pathology
7.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360994

ABSTRACT

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , DNA Repair , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/therapeutic use , Exodeoxyribonucleases/genetics , DNA Repair Enzymes/genetics
8.
Mol Cell ; 84(3): 409-410, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38307000

ABSTRACT

In this issue of Molecular Cell, Lim et al.1 reveal new insights into the distinct roles of BRCA2 in coping with DNA breaks, highlighting homologous recombination as the pivotal function that affects tumorigenesis and therapy response.


Subject(s)
DNA Replication , Rad51 Recombinase , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , DNA Breaks , DNA Repair , Homologous Recombination/genetics , Rad51 Recombinase/genetics , Humans , Animals , Mice
9.
NPJ Precis Oncol ; 8(1): 10, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200223

ABSTRACT

The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and thereby help advance personalized therapy.

10.
Adv Anat Pathol ; 31(2): 61-69, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008971

ABSTRACT

Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.


Subject(s)
DNA Damage , Prostatic Neoplasms , Male , Humans , DNA Mismatch Repair , DNA Repair , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
11.
Vet Pathol ; : 3009858231217245, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098215

ABSTRACT

Research on modulation of iodine uptake by thyroid cells could help improve radioiodine treatment of dogs with thyroid tumors. The aim of this study was to characterize the immunohistochemical expression of thyroid transcription factor-1 (TTF-1), thyroglobulin, thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, thyroid peroxidase (TPO), vimentin, and Ki-67 in follicular cell thyroid carcinomas (FTCs) and medullary thyroid carcinomas (MTCs), and to compare protein expression between FTC causing hyperthyroidism and FTC of euthyroid dogs. Immunohistochemistry was performed in 25 FTCs (9 follicular, 8 follicular-compact, and 8 compact) and 8 MTCs. FTCs and MTCs were positive for TTF-1, and expression was higher in FTCs of euthyroid dogs compared with FTCs of hyperthyroid dogs (P= .041). Immunolabeling for thyroglobulin was higher in follicular and follicular-compact FTCs compared with compact FTCs (P = .001), while vimentin expression was higher in follicular-compact FTCs compared with follicular FTCs (P = .011). The expression of TSHR, NIS, pendrin, and TPO was not significantly different among the different subtypes of FTCs or between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. TSHR, NIS, pendrin, and TPO were also expressed in MTCs. Ki-67 labeling index was comparable between FTCs and MTCs, and between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. Proteins of iodine transport were also expressed in canine MTCs, which could have implications for diagnosis and treatment. The different expression of thyroglobulin and vimentin between FTC histological subtypes could reflect variations in tumor differentiation.

12.
Res Sq ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014112

ABSTRACT

Introduction: Tumor-stroma ratio (TSR) is prognostic in multiple cancers, while its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Despite the prognostic insight gained from genetic profiles and tumor-infiltrating lymphocytes (TILs), the prognostic use of histology slides remains limited, while it enables the identification of tumor characteristics via computational pathology reducing scoring time and costs. To address this, this study aimed to assess TSR's prognostic role in HGSOC and its association with TILs. We additionally developed an algorithm, Ovarian-TSR (OTSR), using deep learning for TSR scoring, comparing it to manual scoring. Methods: 340 patients with advanced-stage who underwent primary debulking surgery (PDS) or neo-adjuvant chemotherapy (NACT) with interval debulking (IDS). TSR was assessed in both the most invasive (MI) and whole tumor (WT) regions through manual scoring by pathologists and quantification using OTSR. Patients were categorized as stroma-rich (≥ 50% stroma) or stroma-poor (< 50%). TILs were evaluated via immunohistochemical staining. Results: In PDS, stroma-rich tumors were significantly associated with a more frequent papillary growth pattern (60% vs 34%), while In NACT stroma-rich tumors had a lower Tumor Regression Grading (TRG 4&5, 21% vs 57%) and increased pleural metastasis (25% vs 16%). Stroma-rich patients had significantly shorter overall and progression-free survival compared to stroma-poor (31 versus 45 months; P < 0.0001, and 15 versus 17 months; P = 0.0008, respectively). Combining stromal percentage and TILs led to three distinct survival groups with good (stroma-poor, high TIL), medium (stroma-rich, high TIL, or; stroma-poor, Low TIL), and poor(stroma-rich, low TIL) survival. These survival groups remained significant in CD8 and CD103 in multivariable analysis (Hazard ratio (HR) = 1.42, 95% Confidence-interval (CI) = 1.02-1.99; HR = 1.49, 95% CI = 1.01-2.18, and HR = 1.48, 95% CI = 1.05-2.08; HR = 2.24, 95% CI = 1.55-3.23, respectively). OTSR was able to recapitulate these results and demonstrated high concordance with expert pathologists (correlation = 0.83). Conclusions: TSR is an independent prognostic factor for survival assessment in HGSOC. Stroma-rich tumors have a worse prognosis and, in the case of NACT, a higher likelihood of pleural metastasis. OTSR provides a cost and time-efficient way of determining TSR with high reproducibility and reduced inter-observer variability.

13.
Viruses ; 15(9)2023 09 17.
Article in English | MEDLINE | ID: mdl-37766348

ABSTRACT

Equine sarcoids (EqS) are fibroblast-derived skin tumors associated with bovine papillomavirus 1 and 2 (BPV-1 and -2). Based on Southern blotting, the BPV-1 genome was not found to be integrated in the host cell genome, suggesting that EqS pathogenesis does not result from insertional mutagenesis. Hence, CRISPR/Cas9 implies an interesting tool for selectively targeting BPV-1 episomes or genetically anchored suspected host factors. To address this in a proof-of-concept study, we confirmed the exclusive episomal persistence of BPV-1 in EqS using targeted locus amplification (TLA). To investigate the CRISPR/Cas9-mediated editing of BPV-1 episomes, primary equine fibroblast cultures were established and characterized. In the EqS fibroblast cultures, CRISPR-mediated targeting of the episomal E5 and E6 oncogenes as well as the BPV-1 long control region was successful and resulted in a pronounced reduction of the BPV-1 load. Moreover, the deletion of the equine Vimentin (VIM), which is highly expressed in EqS, considerably decreased the number of BPV-1 episomes. Our results suggest CRISPR/Cas9-based gene targeting may serve as a tool to help further unravel the biology of EqS pathogenesis.


Subject(s)
CRISPR-Cas Systems , Skin Neoplasms , Animals , Horses , Oncogenes , Fibroblasts , Gene Targeting
14.
Animals (Basel) ; 13(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570213

ABSTRACT

In dogs, the BRAF mutation (V595E) is common in bladder and prostate cancer and represents a specific diagnostic marker. Recent advantages in artificial intelligence (AI) offer new opportunities in the field of tumour marker detection. While AI histology studies have been conducted in humans to detect BRAF mutation in cancer, comparable studies in animals are lacking. In this study, we used commercially available AI histology software to predict BRAF mutation in whole slide images (WSI) of bladder urothelial carcinomas (UC) stained with haematoxylin and eosin (HE), based on a training (n = 81) and a validation set (n = 96). Among 96 WSI, 57 showed identical PCR and AI-based BRAF predictions, resulting in a sensitivity of 58% and a specificity of 63%. The sensitivity increased substantially to 89% when excluding small or poor-quality tissue sections. Test reliability depended on tumour differentiation (p < 0.01), presence of inflammation (p < 0.01), slide quality (p < 0.02) and sample size (p < 0.02). Based on a small subset of cases with available adjacent non-neoplastic urothelium, AI was able to distinguish malignant from benign epithelium. This is the first study to demonstrate the use of AI histology to predict BRAF mutation status in canine UC. Despite certain limitations, the results highlight the potential of AI in predicting molecular alterations in routine tissue sections.

15.
Cell Rep ; 42(5): 112538, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37209095

ABSTRACT

BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive. To investigate which BRCA1/2-independent mechanisms drive spontaneous resistance in vivo, we combine molecular profiling with functional analysis of HR of matched PARPi-naive and PARPi-resistant mouse mammary tumors harboring large intragenic deletions that prevent reactivation of BRCA1/2. We observe restoration of HR in 62% of PARPi-resistant BRCA1-deficient tumors but none in the PARPi-resistant BRCA2-deficient tumors. Moreover, we find that 53BP1 loss is the prevalent resistance mechanism in HR-proficient BRCA1-deficient tumors, whereas resistance in BRCA2-deficient tumors is mainly induced by PARG loss. Furthermore, combined multi-omics analysis identifies additional genes and pathways potentially involved in modulating PARPi response.


Subject(s)
Neoplasms , Ovarian Neoplasms , Animals , Mice , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Multiomics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Neoplasms/genetics , Ovarian Neoplasms/genetics
16.
Cell Rep ; 42(5): 112484, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37163373

ABSTRACT

The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Repair , DNA Damage , BRCA1 Protein/genetics , Recombinational DNA Repair , Cell Line, Tumor
17.
mBio ; 14(1): e0311422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36645301

ABSTRACT

Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.


Subject(s)
Distemper Virus, Canine , Distemper , Animals , Dogs , Distemper Virus, Canine/genetics , Nectins/genetics , Low Density Lipoprotein Receptor-Related Protein-6 , Ferrets , Receptors, Virus/genetics , Receptors, Virus/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Distemper/prevention & control , Distemper/genetics , Distemper/metabolism
18.
Vet Comp Oncol ; 21(1): 111-122, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36583463

ABSTRACT

Organoid cultures could constitute a valuable in vitro model to explore new treatments for canine (c) medullary thyroid carcinoma (MTC). The study's objectives were to establish and characterize 3D organoid cultures of cMTC using histology and immunohistochemistry (IHC) and to evaluate the effect of antitumor drugs on organoids' viability. Five cMTC tissue samples were used to develop organoid cultures of which one organoid line, named cMTC N°2, could be passaged for an extended period. This cMTC N°2 organoid line was further compared to the primary tumour regarding morphology and IHC expression of thyroid transcription factor-1 (TTF-1), thyroglobulin, calcitonin, synaptophysin, vimentin, Ki-67, cyclooxygenase-2 (COX-2), P-glycoprotein and vascular endothelial growth factor (VEGF). Quality control of the cMTC N°2 organoid line was achieved by a single nucleotide polymorphism (SNP) array of the organoids, primary tumour and healthy blood cells of the same dog. The effect of carboplatin, meloxicam and toceranib phosphate (TOC) on cMTC N°2 organoids' viability was evaluated. The cMTC N°2 organoid line was cultured for 94 days and showed similar histological features with the primary tumour. Immunolabelling for TTF-1, thyroglobulin, calcitonin and VEGF was similar between the primary tumour and cMTC N°2 organoids. Compared to the primary tumour, organoids showed higher immunolabelling for vimentin and Ki-67, and lower immunolabelling for synaptophysin, COX-2 and P-glycoprotein. The SNP genotype was similar for each chromosome between healthy blood cells, primary tumour and cMTC N°2 organoids. Carboplatin, meloxicam and TOC had no effect on cMTC N°2 organoid cell viability within achievable in vivo concentration range. In conclusion, the cMTC N°2 organoid line is a promising first milestone towards an established in vitro organoid model to explore pathophysiology and new treatment modalities in cMTC.


Subject(s)
Dog Diseases , Thyroid Neoplasms , Dogs , Animals , Calcitonin/metabolism , Calcitonin/pharmacology , Thyroglobulin/metabolism , Thyroglobulin/pharmacology , Synaptophysin/metabolism , Synaptophysin/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vimentin/metabolism , Carboplatin/pharmacology , Cyclooxygenase 2/metabolism , Ki-67 Antigen/metabolism , Meloxicam/therapeutic use , Dog Diseases/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/veterinary , Organoids/metabolism , Organoids/pathology , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/pharmacology
19.
Cancer Res Commun ; 2(10): 1266-1281, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36467895

ABSTRACT

In recent years platinum (Pt) drugs have been found to be especially efficient to treat patients with cancers that lack a proper DNA damage response, e.g. due to dysfunctional BRCA1. Despite this knowledge, we are still missing helpful markers to predict Pt response in the clinic. We have previously shown that volume-regulated anion channels, containing the subunits LRRC8A and LRRC8D, promote the uptake of cisplatin and carboplatin in BRCA1-proficient cell lines. Here, we show that the loss of LRRC8A or LRRC8D significantly reduces the uptake of cis- and carboplatin in BRCA1;p53-deficient mouse mammary tumor cells. This results in reduced DNA damage and in vivo drug resistance. In contrast to Lrrc8a, the deletion of the Lrrc8d gene does not affect the viability and fertility of mice. Interestingly, Lrrc8d-/- mice tolerate a two-fold cisplatin maximum-tolerable dose. This allowed us to establish a mouse model for intensified Pt-based chemotherapy, and we found that an increased cisplatin dose eradicates BRCA1;p53-deficient tumors, whereas eradication is not possible in WT mice. Moreover, we show that decreased expression of LRRC8A/D in head and neck squamous cell carcinoma patients, who are treated with a Pt-based chemoradiotherapy, leads to decreased overall survival of the patients. In particular, high cumulative cisplatin dose treatments lost their efficacy in patients with a low LRRC8A/D expression in their cancers. Our data therefore suggest that LRRC8A and LRRC8D should be included in a prospective trial to predict the success of intensified cis- or car-boplatin-based chemotherapy.


Subject(s)
Cisplatin , Platinum , Mice , Animals , Cisplatin/pharmacology , Carboplatin/pharmacology , Platinum/metabolism , Tumor Suppressor Protein p53/genetics , Prospective Studies , Membrane Proteins/genetics , Anions/metabolism
20.
Sci Rep ; 12(1): 18051, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302863

ABSTRACT

Mammary tumors in dogs hold great potential as naturally occurring breast cancer models in translational oncology, as they share the same environmental risk factors, key histological features, hormone receptor expression patterns, prognostic factors, and genetic characteristics as their human counterparts. We aimed to develop in vitro tools that allow functional analysis of canine mammary tumors (CMT), as we have a poor understanding of the underlying biology that drives the growth of these heterogeneous tumors. We established the long-term culture of 24 organoid lines from 16 dogs, including organoids derived from normal mammary epithelium or benign lesions. CMT organoids recapitulated key morphological and immunohistological features of the primary tissue from which they were derived, including hormone receptor status. Furthermore, genetic characteristics (driver gene mutations, DNA copy number variations, and single-nucleotide variants) were conserved within tumor-organoid pairs. We show how CMT organoids are a suitable model for in vitro drug assays and can be used to investigate whether specific mutations predict therapy outcomes. Specifically, certain CMT subtypes, such as PIK3CA mutated, estrogen receptor-positive simple carcinomas, can be valuable in setting up a preclinical model highly relevant to human breast cancer research. In addition, we could genetically modify the CMT organoids and use them to perform pooled CRISPR/Cas9 screening, where library representation was accurately maintained. In summary, we present a robust 3D in vitro preclinical model that can be used in translational research, where organoids from normal, benign as well as malignant mammary tissues can be propagated from the same animal to study tumorigenesis.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Dogs , Animals , Female , Organoids/metabolism , Breast Neoplasms/pathology , DNA Copy Number Variations , Biological Specimen Banks , Mammary Neoplasms, Animal/pathology , Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...