Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 5(6): e01798, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31338440

ABSTRACT

Alterations in the control of apoptotic processes were observed in cells during space flight or under simulated microgravity, the latter obtained with the 3D-Random Positioning Machine (3D-RPM). Usually the proteins Bax and Bcl-2, act as pro- or anti-apoptotic regulators. Here we investigated the effects of simulated microgravity obtained by the 3D-RPM on cell viability, localization and expression of Bax and Bcl-2 in cultures of glial cancerous cells. We observed for the first time a transient cytoplasmic/nuclear translocation of Bax and Bcl-2 triggered by changing gravity vector. Bax translocates into the nucleus after 1 h, is present simultaneously in the cytoplasm after 6 h and comes back to the cytoplasm after 24 h. Bcl-2 translocate into the nucleus only after 6 h and comes back to the cytoplasm after 24 h. Physiological meaning, on the regulation of apoptotic event and possible applicative outcomes of such finding are discussed.

2.
Aquat Toxicol ; 130-131: 77-85, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23376697

ABSTRACT

The objective of this study is to examine the toxicity of engineered nanoparticles (NPs) that are dispersed in sea water by using an in vivo model. Because many products of nanotechnology contain NPs and are commonly used and well-established in the market, the accidental release of NPs into the air and water is quite possible. Indeed, at the end of their life cycle, some NPs are inevitably released into waste water and can reach marine ecosystem and affect the organisms there. Although there are few data on the presence of NPs in the marine environment, our awareness of their potential impact on environmental and organismal health is growing. Shallow-water benthonic organisms such as sea urchins provide planktonic larvae as a trophic base for finfish juveniles and are exposed to water from estuaries and precipitation. Such organisms can therefore be directly affected by NPs that are dispersed into those media. We evaluated the effects of exposure to different concentrations of nanosilver, titanium oxide and cobalt NPs on the sperm of the sea urchin Paracentrotus lividus by analyzing the functionality and the morphology and biochemistry of the first developmental stages of the sea urchin. Sperm were exposed to sea water containing suspensions of NPs ranging from 0.0001 mg/L to 1 mg/L. Fertilization ability was not affected, but developmental anomalies were identified in embryos from the gastrula to pluteus stages, including morphological alterations of the skeletal rods. In addition, the enzymatic activity (cholinesterase, ChE) of the larvae was measured. Acetylcholinesterase (AChE) and propionylcholinesterase activity (PrChE) was affected in all of the exposed samples. The results did not vary consistently with the concentration of NP, but controls were significantly different from exposed samples. Exposure of sea urchin to these NPs may cause neurotoxic damage, and the altered ChE activity may be involved in skeletogenic aberrations. In conclusion, the sea urchin represents a suitable and sensitive model for testing the toxicity and effects of engineered NPs that are dispersed in sea water.


Subject(s)
Metal Nanoparticles/toxicity , Paracentrotus/drug effects , Particle Size , Acetylcholinesterase/metabolism , Animals , Cholinesterases/metabolism , Cobalt/toxicity , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Female , Larva/drug effects , Larva/growth & development , Larva/physiology , Male , Ovum/drug effects , Paracentrotus/embryology , Paracentrotus/growth & development , Paracentrotus/physiology , Silver/toxicity , Spermatozoa/drug effects , Titanium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL