Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Pers Med ; 13(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37511655

ABSTRACT

The inter-individual variability of CYP450s enzyme activity may be reduced by comparing the effects of bariatric surgery on CYP-mediated drug elimination in comparable patients before and after surgery. The current research will use a low-dose phenotyping cocktail to simultaneously evaluate the activities of six CYP isoforms and P-gp. The results showed that following weight reduction after surgery, the activity of all enzymes increased compared to the obese period, which was statistically significant in the case of CYP3A, CYP2B6, CYP2C9, and CYP1A2. Furthermore, the activity of P-gp after surgery decreased without reaching a statistical significance (p-value > 0.05). Obese individuals had decreased CYP3A and CYP2D6 activity compared with the control group, although only CYP3A was statistically important. In addition, there was a trend toward increased activity for CYP1A2, CYP2B6, CYP2C9, and CYP2C19 in obese patients compared to the control group, without reaching statistical insignificance (p-value ≥ 0.05). After six months (at least), all enzymes and the P-gp pump activity were significantly higher than the control group except for CYP2D6. Ultimately, a greater comprehension of phenoconversion can aid in altering the patient's treatment. Further studies are required to confirm the changes in the metabolic ratios of probes after bariatric surgery to demonstrate the findings' clinical application. As a result, the effects of inflammation-induced phenoconversion on medication metabolism may differ greatly across persons and drug CYP pathways. It is essential to apply these results to the clinic to recommend dose adjustments.

2.
Basic Clin Pharmacol Toxicol ; 132(6): 487-499, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36734157

ABSTRACT

The present study evaluates the influence of type 2 diabetes (T2D) on important CYP450 (CYP) isoforms and P-glycoprotein (Pgp) transporter activities before and 3 months after an intensifying treatment regimen involving 40 patients. Results have been compared with 21 non-T2D healthy participants (the control group). CYPs and Pgp activities were assessed after administering the Geneva cocktail. The mean metabolic ratios (MR) for CYP2B6 (1.81 ± 0.93 versus 2.68 ± 0.87), CYP2C19 (0.420 ± 0.360 versus 0.687 ± 0.558) and CYP3A4/5 (0.487 ± 0.226 versus 0.633 ± 0.254) significantly decreased in T2D patients compared to the control group (p < 0.05). CYP2C9 (0.089 ± 0.037 versus 0.069 ± 0.017) activities slightly increased in diabetic patients, and no difference was observed regarding CYP1A2 (0.154 ± 0.085 versus 0.136 ± 0.065), CYP2D6 (1.17 ± 0.56 versus 1.24 ± 0.83), and Pgp activities in comparison to the control group. Three months after the intensifying treatment regimen, MRs of CYP2C9 (0.080 ± 0.030) and CYP3A4/5 (0.592 ± 0.268) improved significantly and were not statistically different compared to the control group (P > 0.05). Several covariables, such as inflammatory markers (IL-1ß and IL-6), genotypes, diabetes and demographic-related factors, were considered in the analyses. The results indicate that chronic inflammatory status associated with T2D modulates CYP450 activities in an isoform-specific manner.


Subject(s)
Cytochrome P-450 CYP3A , Diabetes Mellitus, Type 2 , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Diabetes Mellitus, Type 2/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phenotype , Genotype , Protein Isoforms/genetics , Protein Isoforms/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
3.
Curr Drug Deliv ; 20(10): 1425-1440, 2023.
Article in English | MEDLINE | ID: mdl-36017864

ABSTRACT

Estimating parameters such as pulmonary drug disposition and deposited dose, as well as determining the influence of pulmonary pharmacokinetics (PK) on drug efficacy and safety, are critical factors for the development of inhaled drug products and help to achieve a better understanding of the drugs' fate in the lungs. Pulmonary disposition and PK have remained poorly understood due to the difficulty to access pulmonary fluids, compared to other biological fluids, such as plasma, for direct or surrogate measurement of the concentration of the active compounds and their metabolites in the lung. The use of the isolated perfused lung model (IPL) has become more common, and it is considered a useful tool to increase understanding in this area since it offers the possibility of controlling the administration and easier sampling of perfusate and lavage fluid. The model also provides an opportunity to study the relationship between PK and pharmacodynamics. This review describes the fundamentals of the IPL model, such as preparation and setting up the method, species selection, drug administration, and lung viability investigation. Besides, different applications of the IPL model like pharmacodynamic studies, pharmacokinetic parameters studies such as absorption, distribution, and metabolism, and evaluation of inhaled formulation have also been reviewed.


Subject(s)
Lung , Administration, Inhalation , Lung/metabolism , Pharmaceutical Preparations
4.
J Pers Med ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36579562

ABSTRACT

Genetic polymorphisms in cytochrome P450 genes can cause variation in metabolism. Thus, single nucleotide variants significantly impact drug pharmacokinetics, toxicity factors, and efficacy and safety of medicines. The distribution of CYP450 alleles varies drastically across ethnicities, with significant implications for personalized medicine and the healthcare system. We combined whole-genome and exome sequencing data to provide a review of CYP450 allele polymorphisms with clinical importance. Data were collected from 800 unrelated Iranians (100 subjects from 8 major ethnicities of Iran), more than 32,000 unrelated Europeans (other than Caucasian), and four Middle Eastern countries. We analyzed the frequencies and similarities of 17 CYP450 frequent alleles related to nine important CYP450 isoenzymes and homozygous and heterozygous genotypes based on these alleles in eight major Iranian ethnics by integrating these data with population-specific linkage information and compared these datasets with mentioned populations.

5.
J Dermatolog Treat ; 33(8): 3160-3164, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35943737

ABSTRACT

BACKGROUND: Ruxolitinib is a JAK1/2 inhibitor, which inhibits the signal transduction of interferon-gamma, a cytokine implicated in the pathogenesis of atopic dermatitis (AD). In this before-after single group phase IIA pilot study, we investigated the efficacy of topical nanoliposomal ruxolitinib phosphate (RuxoLip) emulgel in mild AD. METHODS: Clinical evaluation was conducted on 10 patients with mild AD. The efficacy of the product as well as patient satisfaction was evaluated by local scoring atopic dermatitis (SCORAD) of AD. In addition, trans-epidermal water loss (TEWL), stratum corneum (SC) hydration, sebum, erythema, melanin content, and ultrasonographic parameters were measured before, and two and four weeks after treatment. RESULTS: Four weeks of treatment reduced SCORAD, itching, and burning (p = .001, .001, and .001, respectively) and increased hydration, sebum, and epidermal density (p = .001, .018, and .037, respectively). SCORAD and other skin biophysical parameters improved within two weeks of treatment and then were in plateau for up to four weeks. CONCLUSIONS: The topical ruxolitinib emulgel has good short-term efficacy and tolerability.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Pilot Projects , Nitriles/therapeutic use , Pyrimidines/therapeutic use
6.
Eur J Hosp Pharm ; 29(e1): e67-e71, 2022 03.
Article in English | MEDLINE | ID: mdl-34588225

ABSTRACT

OBJECTIVES: Amikacin is still a widely used aminoglycoside for the treatment of life-threatening infections. The pharmacokinetic parameters of this antibiotic may be altered in critically ill conditions. Moreover, in the elderly population, pathophysiological changes affect these pharmacokinetic variables, making it difficult to predict the appropriate dose and dosing schedule for amikacin. This study aimed to characterise the pharmacokinetics of amikacin in critically ill elderly patients with renal dysfunction, and to evaluate if the available dose adjustment schedules dependent on renal function would be appropriate for empirical dosing. METHODS: Critically ill patients aged >60 years with a creatinine clearance of >20 mL/min in need of treatment with amikacin were randomly enrolled. All the patients received approximately 25 mg/kg amikacin. The patients were then divided into three groups according to the stages of their renal dysfunction based on creatinine clearance, and the optimum time to re-dosing was calculated for each group. The pharmacokinetic parameters of the patients were calculated and estimated as population pharmacokinetic data. RESULTS: Of 30 patients, only 20% attained the target peak levels of amikacin of >64 mg/L. In addition, the mean volume of distribution was 0.47 L/kg. There was a poor correlation between amikacin clearance and creatinine clearance. The difference in amikacin half-life was not statistically significant among any of the stages of renal impairment. CONCLUSIONS: The initial dosing of amikacin in critically ill elderly patients should not be reduced, even in the context of renal impairment. Regarding the dose adjustment in renal impairment, dosing intervals estimation, no decision can be made based on the creatinine clearance and the first dose individualisation method in terms of the two-sample measurements may be considered as an appropriate strategy.


Subject(s)
Amikacin , Kidney Diseases , Aged , Amikacin/pharmacokinetics , Amikacin/therapeutic use , Anti-Bacterial Agents , Critical Illness/therapy , Half-Life , Humans , Kidney Diseases/drug therapy , Middle Aged
7.
Braz. J. Pharm. Sci. (Online) ; 58: e20399, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420401

ABSTRACT

Abstract Evaluating the effects of ecstasy on CYP2E1 activity is of great concern, mainly due to growing trends in abuse and co-administration of MDMA with ethanol and the dominant role of this isoenzyme on ethanol metabolism. This study aimed to evaluate the effects of MDMA on CYP2E1 activity. A total of 24 male rats were selected and divided into three groups. The first and second groups consisted of 12 rats and were employed to optimize the perfusion method, and the third group was employed for studying the alteration of CYP2E1 activity after liver exposure to MDMA (300 and 600 ng/ml). The amount of chlorzoxazone and 6-hydroxy chlorzoxazone in a sample obtained from liver perfusion before and after exposure to a buffer containing MDMA was determined by HPLC-FL. The enzymatic activity of rat CYP2E1 decreased after liver perfusion with a buffer containing 600 ng/ml of MDMA. However, no significant changes were observed in chlorzoxazone and 6-hydroxy chlorzoxazone concentration in perfusate before and after liver perfusion with a buffer containing 300 ng/ml of MDMA. Our findings suggest that the activity of CYP2E1 in rats might decrease only after administration of MDMA at a lethal dose. However, further animal and human studies are needed to confirm our assumption.

8.
J Diabetes Metab Disord ; 20(2): 2085-2092, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34900844

ABSTRACT

Personalized therapy suggests the appropriate drug at the right dose for the first time through genotype-based individualized therapy, instead of prescribing medicines by the traditional one-size-fits-all manner, thereby claiming that it will make medicines safer and more effective. Accordingly, polymorphisms of drug metabolizing enzymes (DMEs), which induce inter-individual variability in the pharmacokinetics of a drug, have attracted great interest in the context of personalized medicine. Obesity is one of the most common chronic diseases in the world, including Iran, and the prevalence is increasing according to predictions. The remarkable role of P450 cytochromes has been verified in the metabolism of numerous drugs, toxins, carcinogen compounds, and the synthesis of some intrinsic compounds, such as steroid hormones. Thus, evaluating the activity of these enzymes is of great importance because any functionality variation can lead to failure in the treatment or unwanted side effects of some drugs. Therefore, any change in the activity of these enzymes in obese patients can also be problematic in the treatment process of these patients in comparison to normal weighted ones. Since only a few human studies have examined the role of inflammation in altering the function of these enzymes, it seems to be necessary to investigate the effect of obesity on the expression and activity of these enzymes; in which the role of inflammatory processes has been proven. Most importantly, it is worth evaluating changes in the activity levels of cytochrome P450 (CYP450) and the inflammatory cytokines after a course of post-surgical treatment and weight loss. To evaluate the activity of CYPs, a multi-drug cocktail is prescribed to obese patients before and after obesity surgery, as well as to healthy volunteers, to provide simultaneous evaluation of different isoforms. A complete demographic data, medical examinations, laboratory tests, and the CYPs genotype of all participants can be extremely important during this investigation.

9.
Adv Pharm Bull ; 11(3): 530-536, 2021 May.
Article in English | MEDLINE | ID: mdl-34513628

ABSTRACT

Purpose: MDMA (methylenedioxymethamphetamine) is a synthetic compound, which is a structurally derivative of amphetamine. Also, it acts like an amphetamine, structurally, and functionally. MDMA uses mechanism-based inhibition, to inhibit isoenzyme CYP2D6. It can also inhibit other isoenzymes contributing to its metabolism, including CYP3A4 which is the most important member of the cytochrome P450 superfamily. Since more than 50% of drugs are metabolized by CYP3A4, its inhibition may cause harmful and even lethal drug interactions. Tramadol, as an opioid-like analgesic, is mainly metabolized into O-desmethyl tramadol (M1), by CYP2D6 and undergoes N-demethylation to M2, by CYP2B6 and CYP3A4. Due to the significant potential of abusing tramadol, either alone or in combination with MDMA, the rate of its toxicity and side effects may increase following possible MDMA relevant enzyme inhibition. Methods: Different doses of MDMA (1-10 mg/kg) were intraperitoneally administered to Wistar male rats of both control and treatment groups. Then, after one hour, their isolated livers were perfused by perfusion buffer containing tramadol (1 µg/mL). Afterward, perfusate samples were collected. They were analyzed by HPLC to determine the concentrations of tramadol and its metabolites. Results: MDMA administration in treatment groups reduced M1 production. On the other hand, by following the treatment with different MDMA doses, the M2 metabolic ratio increased by 46 to 101%. Conclusion: it seems that the regular doses of MDMA cannot inhibit the CYP3A4 activity.

10.
J Pers Med ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34442448

ABSTRACT

Genetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized drug therapy and healthcare programs. To provide a meta-analysis of CYP allele polymorphisms with clinical importance, we brought together whole-genome and exome sequencing data from 800 unrelated individuals of Iranian population (100 subjects from 8 major ethnics of Iran) and 63,269 unrelated individuals of five major human populations (EUR, AMR, AFR, EAS and SAS). By integrating these datasets with population-specific linkage information, we evolved the frequencies of 140 CYP haplotypes related to 9 important CYP450 isoenzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) giving a large resource for major genetic determinants of drug metabolism. Furthermore, we evaluated the more frequent Iranian alleles and compared the dataset with the Caucasian race. Finally, the similarity of the Iranian population SNVs with other populations was investigated.

11.
Pharm Dev Technol ; 26(6): 647-660, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33896355

ABSTRACT

The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemical synthesis , Particle Size , Vancomycin/chemical synthesis , Administration, Inhalation , Drug Evaluation, Preclinical/methods , Dry Powder Inhalers/methods , Excipients/administration & dosage , Excipients/analysis , Powders , Vancomycin/administration & dosage , Vancomycin/analysis , X-Ray Diffraction/methods
12.
Drug Metab Pers Ther ; 35(2)2020 06 29.
Article in English | MEDLINE | ID: mdl-32681776

ABSTRACT

Objectives Due to lack of adequate data on tramadol kinetic in relevance of CYP2D6 toxicity, this study was designed to investigate the effect of CYP2D6 phenotype in tramadol poisoning. The saliva, urine and blood samples were taken at the admission time. Consequently, concentration of tramadol and its major metabolites were measured. Methods A pharmacokinetic and metabolic study was developed in cases of tramadol poisoned (n=96). Cases of tramadol poisoned evidenced seizure, hypertension, dizziness, nausea and vomiting symptoms participated. Results Female cases showed higher N-desmethyltramadol (M2) tramadol concentrations than male cases: in urine (40.12 ± 124.53 vs. 7.3 ± 7.13), saliva (16.91 ± 26.03 vs. 5.89 ± 7.02), and blood (1.11 ± 1.56 vs. 0.3 ± 0.38) samples. Significant correlation between blood, saliva, and urine concentrations were found (r = 0.5). Based on the metabolic ratio of O-desmethyltramadol (M1) of male (0.53 ± 0.22) and female (0.43 ± 0.26), poisoning and severe symptoms like seizure in female occurs statistically fewer (13.04%) than in male (50.6%). Assessment of CYP2D6 phenotype showed all of the participants were extensive metabolizers (EM) and their phenotype was associated with clinical symptoms. Conclusions According to our results, M1 as a high potent metabolite has an important role in toxicity and the likelihood of poisoning in people with EM phenotype. Finally, tramadol metabolic ratio may justify the cause of various symptoms in human tramadol poisoning.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism , Tramadol/pharmacokinetics , Adolescent , Adult , Analgesics, Opioid/adverse effects , Analgesics, Opioid/metabolism , Cytochrome P-450 CYP2D6/blood , Cytochrome P-450 CYP2D6/genetics , Female , Humans , Kinetics , Male , Middle Aged , Phenotype , Tramadol/adverse effects , Tramadol/metabolism , Young Adult
13.
Drug Metab Pers Ther ; 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32598307

ABSTRACT

Objectives Due to lack of adequate data on tramadol kinetic in relevance of CYP2D6 toxicity, this study was designed to investigate the effect of CYP2D6 phenotype in tramadol poisoning. The saliva, urine and blood samples were taken at the admission time. Consequently, concentration of tramadol and its major metabolites were measured. Methods A pharmacokinetic and metabolic study was developed in cases of tramadol poisoned (n=96). Cases of tramadol poisoned evidenced seizure, hypertension, dizziness, nausea and vomiting symptoms participated. Results Female cases showed higher N-desmethyltramadol (M2) tramadol concentrations than male cases: in urine (40.12 ± 124.53 vs. 7.3 ± 7.13), saliva (16.91 ± 26.03 vs. 5.89 ± 7.02), and blood (1.11 ± 1.56 vs. 0.3 ± 0.38) samples. Significant correlation between blood, saliva, and urine concentrations were found (r = 0.5). Based on the metabolic ratio of O-desmethyltramadol (M1) of male (0.53 ± 0.22) and female (0.43 ± 0.26), poisoning and severe symptoms like seizure in female occurs statistically fewer (13.04%) than in male (50.6%). Assessment of CYP2D6 phenotype showed all of the participants were extensive metabolizers (EM) and their phenotype was associated with clinical symptoms. Conclusions According to our results, M1 as a high potent metabolite has an important role in toxicity and the likelihood of poisoning in people with EM phenotype. Finally, tramadol metabolic ratio may justify the cause of various symptoms in human tramadol poisoning.

14.
Daru ; 28(2): 479-487, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32378154

ABSTRACT

INTRODUCTION: Conversion in the metabolism of drugs occurs in diabetes mellitus. Considering the importance of metabolic enzymes' activities on the efficacy and safety of medicines, the changes in liver enzymatic activity of CYP2D1 and its related hepatic clearance, by using Dextromethorphan as probe in the animal model of type I and type II diabetes, before and after treatment, was assessed in this study. METHODS: Male Wistar rats were randomly divided into 6 groups. Seven days after induction of diabetes type I and type II, treatment groups were received insulin and metformin daily for 14 days, respectively. In day 21, rats were subjected to liver perfusion by Krebs-Henseleit buffer containing Dextromethorphan as CYP2D1 probe. Perfusate samples were analyzed by HPLC fluorescence method in order to evaluate any changes in CYP2D1 activity. RESULTS: The average metabolic ratio of dextromethorphan and hepatic clearance were changed from 0.012 ± 0.004 and 6.3 ± 0.1 in the control group to 0.006 ± 0.0008 and 5.2 ± 0.2 in the untreated type I diabetic group, and 0.008 ± 0.003 and 5.0 ± 0.6 in the untreated type II diabetic rats. Finally, the mean metabolic ratio and hepatic clearance were changed to 0.008 ± 0.001 and 5.4 ± 0.1, and 0.013 ± 0.003 and 6.1 ± 0.4 in the treated groups with insulin and metformin, respectively. CONCLUSION: In type I diabetic rats, corresponding treatment could slightly improve enzyme activity, whereas the hepatic clearance and enzyme activity reached to the normal level in type II group. Graphical abstract .


Subject(s)
Cytochrome P450 Family 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Metformin/administration & dosage , Animals , Dextromethorphan/administration & dosage , Dextromethorphan/pharmacokinetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation/drug effects , Hepatobiliary Elimination , Hypoglycemic Agents/pharmacokinetics , Insulin/pharmacokinetics , Male , Metformin/pharmacokinetics , Niacinamide , Rats , Rats, Wistar , Streptozocin
15.
MethodsX ; 7: 100853, 2020.
Article in English | MEDLINE | ID: mdl-32337164

ABSTRACT

Cytochrome P450s (CYP450) family is one of the most critical factors in the metabolism process. Hence, the present study aims to characterize the activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, and P-glycoprotein (P-gp) pump in patients with type 2 diabetes (T2DM). This characterization was performed before and after good glycemic control versus non-diabetic subjects following the administration of a substrate probe drug cocktail. This single-center clinical study proposes the characterization of T2DM impacts on major CYP450 drug-metabolizing enzyme and P-glycoprotein (P-gp) activities. The main propose of the present study is evaluating any alternation in major CYP450 enzymes and P-gp activities in patients with T2DM, before (A1C>7%) and after (A1C≤7%) good glycemic control along with comparing the activities versus non-diabetic subjects. The phenotypes will be assessed following the oral administration of a drug cocktail containing caffeine (CYP1A2), bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A4/5), and fexofenadine (P-gp) as probe substrates. Furthermore, the influence of variables such as glycemia, genetic polymorphisms, and inflammation on the metabolism process will be evaluated. The first patient has entered the study in Dec 2018.

16.
Drug Dev Ind Pharm ; 46(2): 318-328, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31976771

ABSTRACT

Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.


Subject(s)
Alginates/chemistry , Fingolimod Hydrochloride/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Fingolimod Hydrochloride/pharmacokinetics , Fingolimod Hydrochloride/pharmacology , Hydrophobic and Hydrophilic Interactions , Male , Rats , Rats, Wistar , Tissue Distribution
17.
J Diabetes Metab Disord ; 19(2): 2049-2056, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33520876

ABSTRACT

INTRODUCTION: Changes in hepatic clearance and CYP2D1 activity after combination therapy with insulin and metformin in type-1 diabetes and insulin administration in type-2 diabetes was assessed in an animal model. METHODS: Ten male Wistar rats were divided into two groups. Seven days after induction of diabetes, in treatment groups, type-1 diabetic rats received insulin plus metformin, and type-2 diabetic rats received insulin daily for 14 days. On day 21, rats were subjected to liver perfusion using Krebs-Henseleit buffer containing dextromethorphan as a CYP2D1 probe. Perfusate samples were analyzed by HPLC-FL. RESULTS: The average metabolic rate of dextromethorphan and hepatic clearance changed from 0.012 ± 0.004 and 6.3 ± 0.1 ml/min in the control group to 0.006 ± 0.001 and 5.2 ± 0.2 ml/min in the untreated type-1 diabetic group, and 0.008 ± 0.003 and 5 ± 0.6 ml/min in the untreated type-2 diabetic rats [1]. In the present study, metabolic rate and hepatic clearance changed to 0.0112 ± 0.0008 and 6.2 ± 0.1 ml/min in the type-1 diabetic group treated with insulin plus metformin, and 0.0149 ± 0.0012 and 6.03 ± 0.06 ml/min in the insulin-receiving type-2 diabetic rats. CONCLUSIONS: Administration of insulin plus metformin in type-1 diabetes could modulate the function of CYP2D1 to the observed levels in the control group and made it clearer to predict the fate of drugs that are metabolized by this enzyme. Moreover, good glycemic control with insulin administration has a significant effect on the balance between hepatic clearance and CYP2D1 activity in type-2 diabetes.

18.
Clin Pharmacol Drug Dev ; 9(3): 341-345, 2020 04.
Article in English | MEDLINE | ID: mdl-31379101

ABSTRACT

Multiple sclerosis, which is characterized by inflammation and neurodegeneration, is considered a chronic disease of the central nervous system. Given the lack of pharmacokinetic evaluation of teriflunomide in the Iranian context, the present 2-way crossover study aimed to assess the pharmacokinetic properties and bioequivalence of 2 teriflunomide formulations. To this end, 2 single-dose generic and branded teriflunomide formulations were orally administered to 14 healthy Iranian male volunteers. A washout period of 21 days was allowed between the treatments. The plasma samples containing teriflunomide were analyzed by a simple and sensitive high-performance liquid chromatography method using standard ultraviolet detection. In addition, the pharmacokinetic parameters were calculated for bioequivalence evaluation. The peak area ratio between the teriflunomide and the internal standard was the source of calibration curves, which were linear over the range of 20-40,000 ng/mL (R2 = 0.9994). The results indicated that the 2 formulations had similar pharmacokinetics. Further, the 90%CI of the mean ratios of the test versus the reference formulations of log-transformed area under the concentration-time curve over 72 hours (93% to 107%) and peak concentration (92% to 108%) were within the acceptable range of 80% to 125%. Based on the obtained results, the test formulation of teriflunomide could be similar to that of the reference formulation.


Subject(s)
Crotonates/administration & dosage , Drugs, Generic/administration & dosage , Toluidines/administration & dosage , Administration, Oral , Adult , Area Under Curve , Chromatography, High Pressure Liquid , Cross-Over Studies , Crotonates/pharmacokinetics , Drugs, Generic/pharmacokinetics , Humans , Hydroxybutyrates , Iran , Male , Middle Aged , Nitriles , Therapeutic Equivalency , Toluidines/pharmacokinetics , Young Adult
19.
Daru ; 28(1): 75-85, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31808069

ABSTRACT

PURPOSE: Metal salts are used in formulation of dry powder inhalers (DPIs) for different purposes. Recently the role of these salts in production of small, dense but highly dispersible particles has emerged. In this study the effect of some such salts on dispersibility and respirability of spray dried levofloxacin formulations was evaluated in normal and reduced inhalation air flow or by increasing powder filling in capsules. METHODS: levofloxacin was co-spray dried with different concentrations of common metal chlorides (NaCl, KCl, CaCl2 and MgCl2) either with or without leucine as dispersibility enhancer. Particle size, moisture, morphology, triboelectrification tendency and fine particle fraction (FPF) of resulting powders were evaluated. In addition, the effect of these salts and leucine on dispersibility of resulting powders in reduced air flow rate and increased capsule filling mass were evaluated. RESULTS: Presence of higher tested concentrations of divalent cations increased water content, and reduced FPF significantly. Addition of leucine reduced water content and electrostatic charge, increased particle size and FPF and improved spray drying yield significantly. Lower concentrations of salts did not affect FPF of leucine containing powders significantly, but presence of 2.5% NaCl or MgCl2 preserved the dispersibility in higher capsule fillings. A 2.5% concentration of NaCl in such formulations preserved dispersibility in lower air flows. CONCLUSION: Higher amounts of divalent salts increases triboelectrification and moisture absorption, and reduces FPF. Lower concentrations of NaCl could not improve FPF of leucine containing formulations significantly, but preserves dispersibility in low air flows and high capsule fillings. Graphical abstract.


Subject(s)
Anti-Bacterial Agents/chemistry , Chlorides/chemistry , Levofloxacin/chemistry , Metals/chemistry , Aerosols , Chemistry, Pharmaceutical , Dry Powder Inhalers , Leucine/chemistry , Particle Size , Powders , Spray Drying
20.
Int J Nanomedicine ; 14: 5477-5490, 2019.
Article in English | MEDLINE | ID: mdl-31409999

ABSTRACT

Background: Curcumin, a bioactive component with multiple characteristics, has been shown to have many therapeutic effects. However, there are several limitations regarding the use of curcumin such as instability, low solubility, poor bioavailability, and rapid elimination. Different approaches have been used to solve these problems. Materials and methods: In this study, surface-modified nanosuspension (NS) is investigated as a novel brain delivery system. Two different methods were used for the preparation of nanosuspensions with two different stabilizers. The surface of the nanosuspensions was coated with D-α-tocopheryl polyethylene glycol 1,000 succinate (TPGS) and Tween 80 using physical adsorption. Curcumin NSs were prepared using two different top-down techniques by high-pressure homogenizer and probe sonicator. A validated sensitive and selective high-performance liquid chromatography method using fluorescence detection was used for the determination and quantification of curcumin. Pharmacokinetics and biodistribution of curcumin NSs and solutions after intravenous administration in rats were studied. Results: Higher levels of curcumin in the brain were detected when Tween 80-coated NS was used compared with the curcumin solution and TPGS coated NS (TPGS-NS) (P-value<0.05). Absorption of ApoE and/or B by Tween 80-coated nanoparticles (NPs) from the blood were caused transferring of these NPs into the brain using receptor-mediated endocytosis. Distribution of TPGS-NS in the brain compared with the curcumin solution was higher (P-value<0.05). Higher levels of curcumin concentration in the liver, spleen, and lung were also observed with TPGS-NS. Conclusion: The results of this study indicate that the surface-coating of NSs by Tween 80 may be used to improve the biodistribution of curcumin in the brain.


Subject(s)
Brain/metabolism , Curcumin/administration & dosage , Drug Delivery Systems , Nanoparticles/chemistry , Suspensions/chemistry , Administration, Intravenous , Animals , Biological Availability , Curcumin/pharmacokinetics , Male , Nanoparticles/ultrastructure , Particle Size , Rats, Wistar , Tissue Distribution , Vitamin E/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL