Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2301763, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678523

ABSTRACT

Autonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe2 films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe2 films based on Raman spectral criteria by efficiently sampling 0.25% of the chosen 4D parameter space. With throughputs at least 10x faster than traditional PLD workflows, this platform and workflow enables the accelerated discovery and autonomous optimization of the vast number of materials that can be synthesized by PLD.

2.
Sci Adv ; 10(8): eadj0758, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381831

ABSTRACT

Isotope effects have received increasing attention in materials science and engineering because altering isotopes directly affects phonons, which can affect both thermal properties and optoelectronic properties of conventional semiconductors. However, how isotopic mass affects the optoelectronic properties in 2D semiconductors remains unclear because of measurement uncertainties resulting from sample heterogeneities. Here, we report an anomalous optical bandgap energy red shift of 13 (±7) milli-electron volts as mass of Mo isotopes is increased in laterally structured 100MoS2-92MoS2 monolayers grown by a two-step chemical vapor deposition that mitigates the effects of heterogeneities. This trend, which is opposite to that observed in conventional semiconductors, is explained by many-body perturbation and time-dependent density functional theories that reveal unusually large exciton binding energy renormalizations exceeding the ground-state renormalization energy due to strong coupling between confined excitons and phonons. The isotope effect on the optical bandgap reported here provides perspective on the important role of exciton-phonon coupling in the physical properties of two-dimensional materials.

3.
ACS Appl Electron Mater ; 5(8): 4556-4563, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37637973

ABSTRACT

Interfacial strain in heteroepitaxial oxide thin films is a powerful tool for discovering properties and recognizing the potential of materials performance. Particularly, facilitating ion conduction by interfacial strain in oxide multilayer thin films has always been seen to be a highly promising route to this goal. However, the effect of interfacial strain on ion transport properties is still controversial due to the difficulty in deconvoluting the strain contribution from other interfacial phenomena, such as space charge effects. Here, we show that interfacial strain can effectively tune the ionic conductivity by successfully growing multilayer thin films composed of an ionic conductor Gd-doped CeO2 (GDC) and an insulator RE2O3 (RE = Y and Sm). In contrast to compressively strained GDC-Y2O3 multilayer films, tensile strained GDC-Sm2O3 multilayer films demonstrate the enhanced ionic conductivity of GDC, which is attributed to the increased concentration of oxygen vacancies. In addition, we demonstrate that increasing the number of interfaces has no impact on the further enhancement of the ionic conductivity in GDC-Sm2O3 multilayer films. Our findings demonstrate the unambiguous role of interfacial strain on ion conduction of oxides and provide insights into the rational design of fast ion conductors through interface engineering.

4.
ACS Nano ; 17(3): 2472-2486, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36649648

ABSTRACT

Energetic processing methods such as hyperthermal implantation hold special promise to achieve the precision synthesis of metastable two-dimensional (2D) materials such as Janus monolayers; however, they require precise control. Here, we report a feedback approach to reveal and control the transformation pathways in materials synthesis by pulsed laser deposition (PLD) and apply it to investigate the transformation kinetics of monolayer WS2 crystals into Janus WSSe and WSe2 by implantation of Se clusters with different maximum kinetic energies (<42 eV/Se-atom) generated by laser ablation of a Se target. Real-time Raman spectroscopy and photoluminescence are used to assess the structure, composition, and optoelectronic quality of the monolayer crystal as it is implanted with well-controlled fluxes of selenium for different kinetic energies that are regulated with in situ ICCD imaging, ion probe, and spectroscopy diagnostics. First-principles calculations, XPS, and atomic-resolution HAADF STEM imaging are used to understand the intermediate alloy compositions and their vibrational modes to identify transformation pathways. The real-time kinetics measurements reveal highly selective top-layer conversion as WS2 transforms through WS2(1-x)Se2x alloys to WSe2 and provide the means to adjust processing conditions to achieve fractional and complete Janus WSSe monolayers as metastable transition states. The general approach demonstrates a real-time feedback method to achieve Janus layers or other metastable alloys of the desired composition, and a general means to adjust the structure and quality of materials grown by PLD, addressing priority research directions for precision synthesis with real-time adaptive control.

5.
ACS Nano ; 16(9): 13900-13910, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35775975

ABSTRACT

PdSe2 has a layered structure with an unusual, puckered Cairo pentagonal tiling. Its atomic bond configuration features planar 4-fold-coordinated Pd atoms and intralayer Se-Se bonds that enable polymorphic phases with distinct electronic and quantum properties, especially when atomically thin. PdSe2 is conventionally orthorhombic, and direct synthesis of its metastable polymorphic phases is still a challenge. Here, we report an ambient-pressure chemical vapor deposition approach to synthesize metastable monoclinic PdSe2. Monoclinic PdSe2 is shown to be synthesized selectively under Se-deficient conditions that induce Se vacancies. These defects are shown by first-principles density functional theory calculations to reduce the free energy of the metastable monoclinic phase, thereby stabilizing it during synthesis. The structure and composition of the monoclinic PdSe2 crystals are identified and characterized by scanning transmission electron microscopy imaging, convergent beam electron diffraction, and electron energy loss spectroscopy. Polarized Raman spectroscopy of the monoclinic PdSe2 flakes reveals their strong in-plane optical anisotropy. Electrical transport measurements show that the monoclinic PdSe2 exhibits n-type charge carrier conduction with electron mobilities up to ∼298 cm2 V-1 s-1 and a strong in-plane electron mobility anisotropy of ∼1.9. The defect-mediated growth pathway identified in this work is promising for phase-selective direct synthesis of other 2D transition metal dichalcogenides.

6.
Adv Mater ; 34(3): e2106674, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738669

ABSTRACT

Defects are ubiquitous in 2D materials and can affect the structure and properties of the materials and also introduce new functionalities. Methods to adjust the structure and density of defects during bottom-up synthesis are required to control the growth of 2D materials with tailored optical and electronic properties. Here, the authors present an Au-assisted chemical vapor deposition approach to selectively form SW and S2W antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS2 monolayers. Guided by first-principles calculations, they describe a new method that can maintain tungsten-poor growth conditions relative to sulfur via the low solubility of W atoms in a gold/W alloy, thereby significantly reducing the formation energy of the antisite defects during the growth of WS2 . The atomic structure and composition of the antisite defects are unambiguously identified by Z-contrast scanning transmission electron microscopy and electron energy-loss spectroscopy, and their total concentration is statistically determined, with levels up to ≈5.0%. Scanning tunneling microscopy/spectroscopy measurements and first-principles calculations further verified these antisite defects and revealed the localized defect states in the bandgap of WS2 monolayers. This bottom-up synthesis method to form antisite defects should apply in the synthesis of other 2D materials.

7.
Nanomicro Lett ; 14(1): 2, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34859320

ABSTRACT

Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide La0.7Sr0.3MnO3 (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.

8.
ACS Nano ; 15(5): 8638-8652, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33929816

ABSTRACT

Understanding the bottom-up synthesis of atomically thin two-dimensional (2D) crystals and heterostructures is important for the development of new processing strategies to assemble 2D heterostructures with desired functional properties. Here, we utilize in situ laser-heating within a transmission electron microscope (TEM) to understand the stages of crystallization and coalescence of amorphous precursors deposited by pulsed laser deposition (PLD) as they are guided by 2D crystalline substrates into van der Waals (vdW) epitaxial heterostructures. Amorphous clusters of tungsten selenide were deposited by PLD at room temperature onto graphene or MoSe2 monolayer crystals that were suspended on TEM grids. The precursors were then stepwise evolved into 2D heterostructures with pulsed laser heating treatments within the TEM. The lattice-matching provided by the MoSe2 substrate is shown to guide the formation of large-domain, heteroepitaxial vdW WSe2/MoSe2 bilayers both during the crystallization process via direct templating and after crystallization by assisting the coalescence of nanosized domains through nonclassical particle attachment processes including domain rotation and grain boundary migration. The favorable energetics for domain rotation induced by lattice matching with the substrate were understood from first-principles calculations. These in situ TEM studies of pulsed laser-driven nonequilibrium crystallization phenomena represent a transformational tool for the rapid exploration of synthesis and processing pathways that may occur on extremely different length and time scales and lend insight into the growth of 2D crystals by PLD and laser crystallization.

9.
ACS Nano ; 15(3): 4504-4517, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33651582

ABSTRACT

Tailoring the grain boundaries (GBs) and twist angles between two-dimensional (2D) crystals are two crucial synthetic challenges to deterministically enable envisioned applications such as moiré excitons, emerging magnetism, or single-photon emission. Here, we reveal how twisted 2D bilayers can be synthesized from the collision and coalescence of two growing monolayer MoS2 crystals during chemical vapor deposition. The twisted bilayer (TB) moiré angles are found to preserve the misorientation angle (θ) of the colliding crystals. The shapes of the TB regions are rationalized by a kink propagation model that predicts the GB formed by the coalescing crystals. Optical spectroscopy measurements reveal a θ-dependent long-range strain in crystals with stitched grain boundaries and a sharp (θ > 20°) threshold for the appearance of TBs, which relieves this strain. Reactive molecular dynamics simulations explain this strain from the continued growth of the crystals during coalescence due to the insertion of atoms at unsaturated defects along the GB, a process that self-terminates when the defects become saturated. The simulations also reproduce atomic-resolution electron microscopy observations of faceting along the GB, which is shown to arise from the growth-induced long-range strain. These facets align with the axes of the colliding crystals to provide favorable nucleation sites for second-layer growth of a TB with twist angles that preserve the misorientation angle θ. This interplay between strain generation and aligned nucleation provides a synthetic pathway for the growth of TBs with deterministic angles.

10.
ACS Nano ; 15(2): 2858-2868, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33576605

ABSTRACT

Pulsed laser deposition (PLD) can be considered a powerful method for the growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) into van der Waals heterostructures. However, despite significant progress, the defects in 2D TMDs grown by PLD remain largely unknown and yet to be explored. Here, we combine atomic resolution images and first-principles calculations to reveal the atomic structure of defects, grains, and grain boundaries in mono- and bilayer MoS2 grown by PLD. We find that sulfur vacancies and MoS antisites are the predominant point defects in 2D MoS2. We predict that the aforementioned point defects are thermodynamically favorable under a Mo-rich/S-poor environment. The MoS2 monolayers are polycrystalline and feature nanometer size grains connected by a high density of grain boundaries. In particular, the coalescence of nanometer grains results in the formation of 180° mirror twin boundaries consisting of distinct 4- and 8-membered rings. We show that PLD synthesis of bilayer MoS2 results in various structural symmetries, including AA' and AB, but also turbostratic with characteristic moiré patterns. Moreover, we report on the experimental demonstration of an electron beam-driven transition between the AB and AA' stacking orientations in bilayer MoS2. These results provide a detailed insight into the atomic structure of monolayer MoS2 and the role of the grain boundaries on the growth of bilayer MoS2, which has importance for future applications in optoelectronics.

12.
Adv Mater ; 32(19): e1906238, 2020 May.
Article in English | MEDLINE | ID: mdl-32173918

ABSTRACT

Two-dimensional (2D) palladium diselenide (PdSe2 ) has strong interlayer coupling and a puckered pentagonal structure, leading to remarkable layer-dependent electronic structures and highly anisotropic in-plane optical and electronic properties. However, the lack of high-quality, 2D PdSe2 crystals grown by bottom-up approaches limits the study of their exotic properties and practical applications. In this work, chemical vapor deposition growth of highly crystalline few-layer (≥2 layers) PdSe2 crystals on various substrates is reported. The high quality of the PdSe2 crystals is confirmed by low-frequency Raman spectroscopy, scanning transmission electron microscopy, and electrical characterization. In addition, strong in-plane optical anisotropy is demonstrated via polarized Raman spectroscopy and second-harmonic generation maps of the PdSe2 flakes. A theoretical model based on kinetic Wulff construction theory and density functional theory calculations is developed and described the observed evolution of "square-like" shaped PdSe2 crystals into rhombus due to the higher nucleation barriers for stable attachment on the (1,1) and (1,-1) edges, which results in their slower growth rates. Few-layer PdSe2 field-effect transistors reveal tunable ambipolar charge carrier conduction with an electron mobility up to ≈294 cm2 V-1 s-1 , which is comparable to that of exfoliated PdSe2 , indicating the promise of this anisotropic 2D material for electronics.

13.
ACS Nano ; 14(4): 3896-3906, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32150384

ABSTRACT

Atomically thin two-dimensional (2D) materials face significant energy barriers for synthesis and processing into functional metastable phases such as Janus structures. Here, the controllable implantation of hyperthermal species from pulsed laser deposition (PLD) plasmas is introduced as a top-down method to compositionally engineer 2D monolayers. The kinetic energies of Se clusters impinging on suspended monolayer WS2 crystals were controlled in the <10 eV/atom range with in situ plasma diagnostics to determine the thresholds for selective top layer replacement of sulfur by selenium for the formation of high quality WSSe Janus monolayers at low (300 °C) temperatures and bottom layer replacement for complete conversion to WSe2. Atomic-resolution electron microscopy and spectroscopy in tilted geometry confirm the WSSe Janus monolayer. Molecular dynamics simulations reveal that Se clusters implant to form disordered metastable alloy regions, which then recrystallize to form highly ordered structures, demonstrating low-energy implantation by PLD for the synthesis of 2D Janus layers and alloys of variable composition.

14.
Ultramicroscopy ; 209: 112842, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31715387

ABSTRACT

Automated image recognition and analysis techniques were combined with liquid cell transmission electron microscopy to explore the oxidation kinetics of nanocrystalline Fe thin films in a water vapor environment. From in situ microscopy experiments, localized oxidation was observed to initiate in the film then propagate in an unsteady fashion, alternatingly arresting and progressing. The oxidation front propagation occurred via new oxidation sites initiating 10s of nm ahead of the existing front rather than through a continuous expansion mechanism. The oxidation rate was seen to be highly dependent on electron dose rate, with increasing electron dose rate accelerating the oxidation front propagation and increasing the density of oxidation initiation sites. The in situ experiments were also performed in diffraction space where it was seen that Fe2O3 was formed during oxidation. Coupling in situ microscopy with automated image analysis creates new opportunities for studying the early stages of localized corrosion by providing direct observation of oxidation propagation as well as quantification of the oxidation rates and rapid identification of byproducts.

15.
Sci Adv ; 5(5): eaav4028, 2019 May.
Article in English | MEDLINE | ID: mdl-31172023

ABSTRACT

Two-dimensional (2D) crystal growth over substrate features is fundamentally guided by the Gauss-Bonnet theorem, which mandates that rigid, planar crystals cannot conform to surfaces with nonzero Gaussian curvature. Here, we reveal how topographic curvature of lithographically designed substrate features govern the strain and growth dynamics of triangular WS2 monolayer single crystals. Single crystals grow conformally without strain over deep trenches and other features with zero Gaussian curvature; however, features with nonzero Gaussian curvature can easily impart sufficient strain to initiate grain boundaries and fractured growth in different directions. Within a strain-tolerant regime, however, triangular single crystals can accommodate considerable (<1.1%) localized strain exerted by surface features that shift the bandgap up to 150 meV. Within this regime, the crystal growth accelerates in specific directions, which we describe using a growth model. These results present a previously unexplored strategy to strain-engineer the growth directions and optoelectronic properties of 2D crystals.

16.
J Am Chem Soc ; 141(22): 8928-8936, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31090414

ABSTRACT

The failure to achieve stable Ohmic contacts in two-dimensional material devices currently limits their promised performance and integration. Here we demonstrate that a phase transformation in a region of a layered semiconductor, PdSe2, can form a contiguous metallic Pd17Se15 phase, leading to the formation of seamless Ohmic contacts for field-effect transistors. This phase transition is driven by defects created by exposure to an argon plasma. Cross-sectional scanning transmission electron microscopy is combined with theoretical calculations to elucidate how plasma-induced Se vacancies mediate the phase transformation. The resulting Pd17Se15 phase is stable and shares the same native chemical bonds with the original PdSe2 phase, thereby forming an atomically sharp Pd17Se15/PdSe2 interface. These Pd17Se15 contacts exhibit a low contact resistance of ∼0.75 kΩ µm and Schottky barrier height of ∼3.3 meV, enabling nearly a 20-fold increase of carrier mobility in PdSe2 transistors compared to that of traditional Ti/Au contacts. This finding opens new possibilities in the development of better electrical contacts for practical applications of 2D materials.

17.
ACS Appl Mater Interfaces ; 11(19): 17979-17986, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31021595

ABSTRACT

Ionic liquids (ILs) have been investigated extensively because of their unique ability to form the electric double layer (EDL), which induces high electrical field. For certain materials, low-temperature IL charging is needed to limit the electrochemical etching. Here, we report our investigation of the low-temperature charging dynamics in two widely used ILs-DEME-TF2N and C4mim-TF2N. Results show that the formation of the EDL at ∼220 K requires several hours relative to milliseconds at room temperature, and an equivalent voltage Ve is introduced as a measure of the EDL formation during the biasing process. The experimental observation is supported by molecular dynamics simulation, which shows that the dynamics are logically a function of gate voltage, time, and temperature. To demonstrate the importance of understanding the charging dynamics, a 140 nm thick FeSe0.5Te0.5 film was biased using the DEME IL, showing a tunable Tc between 18 and 35 K. Notably, this is the first observation of the tunability of the Tc in thick film FeSe0.5Te0.5 superconductors.

18.
Nanoscale ; 11(17): 8138-8149, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30788480

ABSTRACT

Photocatalytic hydrogen evolution from water has received enormous attention due to its ability to address a number of global environmental and energy-related issues. Here, we synthesize 2D/2D Ti3C2/g-C3N4 composites by electrostatic self-assembly technique and demonstrate their use as photocatalysts for hydrogen evolution under visible light irradiation. The optimized Ti3C2/g-C3N4 composite exhibited a 10 times higher photocatalytic hydrogen evolution performance (72.3 µmol h-1 gcat-1) than that of pristine g-C3N4 (7.1 µmol h-1 gcat-1). Such enhanced photocatalytic performance was due to the formation of 2D/2D heterojunctions in the Ti3C2/g-C3N4 composites. The intimate contact between the monolayer Ti3C2 and g-C3N4 nanosheets promotes the separation of photogenerated charge carriers at the Ti3C2/g-C3N4 interface. Furthermore, the ultrahigh conductivity of Ti3C2 and the Schottky junction formed between g-C3N4/MXene interfaces facilitate the photoinduced electron transfer and suppress the recombination with photogenerated holes. This work demonstrates that the 2D/2D Ti3C2/g-C3N4 composites are promising photocatalysts thanks to the ultrathin MXenes as efficient co-catalysts for photocatalytic hydrogen production.

19.
ACS Nano ; 13(2): 2481-2489, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30673215

ABSTRACT

Isotopes represent a degree of freedom that might be exploited to tune the physical properties of materials while preserving their chemical behaviors. Here, we demonstrate that the thermal properties of two-dimensional (2D) transition-metal dichalcogenides can be tailored through isotope engineering. Monolayer crystals of MoS2 were synthesized with isotopically pure 100Mo and 92Mo by chemical vapor deposition employing isotopically enriched molybdenum oxide precursors. The in-plane thermal conductivity of the 100MoS2 monolayers, measured using a non-destructive, optothermal Raman technique, is found to be enhanced by ∼50% compared with the MoS2 synthesized using mixed Mo isotopes from naturally occurring molybdenum oxide. The boost of thermal conductivity in isotopically pure MoS2 monolayers is attributed to the combined effects of reduced isotopic disorder and a reduction in defect-related scattering, consistent with observed stronger photoluminescence and longer exciton lifetime. These results shed light on the fundamentals of 2D nanoscale thermal transport important for the optimization of 2D electronic devices.

20.
Nat Commun ; 9(1): 2051, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29795375

ABSTRACT

Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xW x Se2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo1-x W x Se2 to achieve desired functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...