Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Obes ; 2023: 7392513, 2023.
Article in English | MEDLINE | ID: mdl-37901192

ABSTRACT

Obesity develops largely due to genetic factors, with the genetic polymorphism of lipid metabolism enzymes being of particular importance. However, it is still unclear how the genetic variants of one of the key enzymes in lipid transport, lipoprotein lipase (LPL), are associated with the endocrine function of mesenchymal tissues in obesity. The current study was aimed at the investigation of the LPL rs328 gene variant association with adipokines and myokines levels, as well as lipid metabolism indices in the blood of children and adolescents of both genders with obesity. We found that LPL polymorphism rs328 is not characterized by the differences in the levels of hormones, adipokines, and myokines and in the blood of healthy children and adolescents; however, it significantly affects these indices during obesity in gender-dependent manner. The shifts in hormones, adipokines, and myokines manifest mostly in the obese individuals with Ser447Ser genotype rather than with 447Ter genotype. Obese boys homozygous for Ser447Ser have more elevated leptin levels than girls. They also demonstrate lower adiponectin, apelin, prolactin, and osteocrine levels than those in obese girls with the same genotype. The gender-based differences are less pronounced in individuals with 447Ter genotype than in the homozygotes for 447Ser. Thus, we conclude that the polymorphism rs328 of the lipoprotein lipase gene is accompanied by the changes in hormones, adipokines, and myokines levels in the blood of children and adolescents with obesity in gender-dependent manner.


Subject(s)
Lipoprotein Lipase , Pediatric Obesity , Adolescent , Child , Female , Humans , Male , Adipokines/blood , Adiponectin , Genotype , Lipoprotein Lipase/genetics , Pediatric Obesity/genetics
2.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762509

ABSTRACT

Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (-/-) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol's regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (-/-) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (-/-) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism.

3.
Int J Mol Sci ; 21(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111026

ABSTRACT

Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82 individual molecular targets. For the first time, we showed that the repertoires of molecular targets of accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the other hand, we found that the clinical recommendations for the available cancer drugs were strongly congruent with the gene expression but not gene mutation patterns. We detected the best match among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted therapeutics and intensifying drug repurposing efforts.


Subject(s)
Drug Delivery Systems , Genetic Heterogeneity , Medical Oncology/methods , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Cluster Analysis , Drug Therapy , Genomics , Humans , Mutation , Pathology, Molecular , Precision Medicine/methods , Transcriptome , Exome Sequencing
4.
Cancers (Basel) ; 12(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979117

ABSTRACT

Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.

5.
Front Oncol ; 8: 658, 2018.
Article in English | MEDLINE | ID: mdl-30662873

ABSTRACT

DNA mutations play a crucial role in cancer development and progression. Mutation profiles vary dramatically in different cancer types and between individual tumors. Mutations of several individual genes are known as reliable cancer biomarkers, although the number of such genes is tiny and does not enable differential diagnostics for most of the cancers. We report here a technique enabling dramatically increased efficiency of cancer biomarkers development using DNA mutations data. It includes a quantitative metric termed Pathway instability (PI) based on mutations enrichment of intracellular molecular pathways. This method was tested on 5,956 tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project. Totally, we screened 2,316,670 mutations in 19,872 genes and 1,748 molecular pathways. Our results demonstrated considerable advantage of pathway-based mutation biomarkers over individual gene mutation profiles, as reflected by more than two orders of magnitude greater numbers by high-quality [ROC area-under-curve (AUC)>0.75] biomarkers. For example, the number of such high-quality mutational biomarkers distinguishing between different cancer types was only six for the individual gene mutations, and already 660 for the pathway-based biomarkers. These results evidence that PI value can be used as a new generation of complex cancer biomarkers significantly outperforming the existing gene mutation biomarkers.

6.
Oncotarget ; 8(48): 83768-83780, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29137381

ABSTRACT

Neuroblastoma is a pediatric cancer arising from sympathetic nervous system. Remarkable heterogeneity in outcomes is one of its widely known features. One of the traits strongly associated with the unfavorable subtype is the amplification of oncogene MYCN. Here, we performed cross-platform biomarker detection by comparing gene expression and pathway activation patterns from the two literature reports and from our experimental dataset, combining profiles for the 761 neuroblastoma patients with known MYCN amplification status. We identified 109 / 25 gene expression / pathway activation biomarkers strongly linked with the MYCN amplification. The marker genes/pathways are involved in the processes of purine nucleotide biosynthesis, ATP-binding, tetrahydrofolate metabolism, building mitochondrial matrix, biosynthesis of amino acids, tRNA aminoacylation and NADP-linked oxidation-reduction processes, as well as in the tyrosine phosphatase activity, p53 signaling, cell cycle progression and the G1/S and G2/M checkpoints. To connect molecular functions of the genes involved in MYCN-amplified phenotype, we built a new molecular pathway using known intracellular protein interaction networks. The activation of this pathway was highly selective in discriminating MYCN-amplified neuroblastomas in all three datasets. Our data also suggest that the phosphoinositide 3-kinase (PI3K) inhibitors may provide new opportunities for the treatment of the MYCN-amplified neuroblastoma subtype.

7.
Oncotarget ; 6(29): 26876-85, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26337087

ABSTRACT

Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices.


Subject(s)
DNA Repair , Fibroblasts/radiation effects , Homologous Recombination , Skin/radiation effects , Biopsy , DNA/chemistry , DNA Breaks, Double-Stranded , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Fibroblasts/pathology , Healthy Volunteers , Histones/metabolism , Humans , Male , Middle Aged , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Skin/metabolism , Skin/pathology , X-Rays
8.
Oncotarget ; 6(29): 27227-38, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26317900

ABSTRACT

Effective choice of anticancer drugs is important problem of modern medicine. We developed a method termed OncoFinder for the analysis of new type of biomarkers reflecting activation of intracellular signaling and metabolic molecular pathways. These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, we compared the experimental data obtained in our laboratory and in the Genomics of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs and transcriptomes of various human cell lines. The microarray-based profiling of transcriptomes was performed for the cell lines before the addition of drugs to the medium, and experimental growth inhibition curves were built for each drug, featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed transcriptomic data on ~600 molecular pathways, we identified pathways showing significant correlation between pathway activation strength (PAS) and IC50 values for these drugs. Correlations reflect relationships between response to drug and pathway activation features. We intersected the results and found molecular pathways significantly correlated in both our assay and GDS project. For most of these pathways, we generated molecular models of their interaction with known molecular target(s) of the respective drugs. For the first time, our study uncovered mechanisms underlying cancer cell response to drugs at the high-throughput molecular interactomic level.


Subject(s)
Antineoplastic Agents/therapeutic use , Computational Biology/methods , Gene Expression Profiling , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Genomics , HeLa Cells , Hep G2 Cells , Humans , Indazoles , Indoles/chemistry , Inhibitory Concentration 50 , Jurkat Cells , MCF-7 Cells , Neoplasms/genetics , Neoplasms/metabolism , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Oligonucleotide Array Sequence Analysis , Phenylurea Compounds/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Sirolimus/analogs & derivatives , Sirolimus/chemistry , Sorafenib , Sulfonamides/chemistry , Sunitinib , Transcriptome
9.
Oncotarget ; 6(29): 27275-87, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26314960

ABSTRACT

Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AX (γH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5-60 min), with a maximum induction observed at 30-60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40-60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20-80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Gingiva/radiation effects , Histones/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Adult , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Breaks, Double-Stranded , DNA Repair , Dose-Response Relationship, Radiation , Female , Gingiva/metabolism , Healthy Volunteers , Humans , Microscopy, Fluorescence , Phosphorylation , Signal Transduction , X-Rays
10.
Oncotarget ; 6(30): 29347-56, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26320181

ABSTRACT

A new generation of anticancer therapeutics called target drugs has quickly developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, proliferation, and viability by specific interactions with one or a few target proteins. However, despite formally known molecular targets for every "target" drug, patient response to treatment remains largely individual and unpredictable. Choosing the most effective personalized treatment remains a major challenge in oncology and is still largely trial and error. Here we present a novel approach for predicting target drug efficacy based on the gene expression signature of the individual tumor sample(s). The enclosed bioinformatic algorithm detects activation of intracellular regulatory pathways in the tumor in comparison to the corresponding normal tissues. According to the nature of the molecular targets of a drug, it predicts whether the drug can prevent cancer growth and survival in each individual case by blocking the abnormally activated tumor-promoting pathways or by reinforcing internal tumor suppressor cascades. To validate the method, we compared the distribution of predicted drug efficacy scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafenib, Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal Cell Carcinoma, Colon cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer and Sarcoma) with the available clinical trials data for the respective cancer types and drugs. The percent of responders to a drug treatment correlated significantly (Pearson's correlation 0.77 p = 0.023) with the percent of tumors showing high drug scores calculated with the current algorithm.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Computational Biology , Drug Discovery/methods , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Algorithms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Clinical Trials as Topic , Databases, Genetic , Enzyme Activation , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Humans , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Patient Selection , Phenotype , Precision Medicine , Predictive Value of Tests , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Reproducibility of Results
11.
Cell Cycle ; 14(9): 1476-84, 2015.
Article in English | MEDLINE | ID: mdl-25853282

ABSTRACT

Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.


Subject(s)
Computational Biology , DNA Mutational Analysis/methods , DNA, Viral/genetics , Databases, Genetic , Endogenous Retroviruses/genetics , Genome, Human , Mutagenesis, Insertional , Binding Sites , Cloning, Molecular , DNA, Viral/metabolism , Endogenous Retroviruses/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Hep G2 Cells , Humans , Retroelements , Terminal Repeat Sequences , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Transfection
12.
Aging (Albany NY) ; 7(1): 26-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25587796

ABSTRACT

For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.


Subject(s)
Aging/genetics , Fibroblasts/metabolism , Progeria/genetics , Signal Transduction/drug effects , Age Factors , Aging/metabolism , Aging/pathology , Case-Control Studies , Cell Proliferation/genetics , Cells, Cultured , Cellular Senescence/genetics , Databases, Genetic , Fibroblasts/pathology , Gene Expression Profiling/methods , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Phenotype , Progeria/metabolism , Progeria/pathology
13.
Oncotarget ; 5(20): 10198-205, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25415353

ABSTRACT

Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for cancer, and compared it with the "traditional" molecular markers based on the expression of individual genes. We applied OncoFinder to profile gene expression datasets for the nine human cancer types including bladder cancer, basal cell carcinoma, glioblastoma, hepatocellular carcinoma, lung adenocarcinoma, oral tongue squamous cell carcinoma, primary melanoma, prostate cancer and renal cancer, totally 292 cancer and 128 normal tissue samples taken from the Gene expression omnibus (GEO) repository. We profiled activation of 82 signaling pathways that involve ~2700 gene products. For 9/9 of the cancer types tested, the PAS values showed better area-under-the-curve (AUC) scores compared to the individual genes enclosing each of the pathways. These results evidence that the PAS values can be used as a new type of cancer biomarkers, superior to the traditional gene expression biomarkers.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Signal Transduction
14.
Oncotarget ; 5(22): 11345-53, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-25294811

ABSTRACT

In solid cancers, myeloid derived suppressor cells (MDSC) infiltrate (peri)tumoral tissues to induce immune tolerance and hence to establish a microenvironment permissive to tumor growth. Importantly, the mechanisms that facilitate such infiltration or a subsequent immune suppression are not fully understood. Hence, in this study, we aimed to delineate disparate molecular pathways which MDSC utilize in murine models of colon or breast cancer. Using pathways enrichment analysis, we completed interactome maps of multiple signaling pathways in CD11b+/Gr1(high/low) MDSC from spleens and tumor infiltrates of mice with c26GM colon cancer and tumor infiltrates of MDSC in 4T1 breast cancer. In both cancer models, infiltrating MDSC, but not CD11b+ splenic cells, have been found to be enriched in multiple signaling molecules suggestive of their enhanced proliferative and invasive phenotypes. The interactome data has been subsequently used to reconstruct a previously unexplored regulation of MDSC cell cycle by the c-myc transcription factor which was predicted by the analysis. Thus, this study represents a first interactome mapping of distinct multiple molecular pathways whereby MDSC sustain cancer progression.


Subject(s)
Breast Neoplasms/pathology , Colonic Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Myeloid Cells/pathology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/immunology , CD11b Antigen/biosynthesis , CD11b Antigen/immunology , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mice , Mice, Inbred BALB C , Myeloid Cells/immunology , Signal Transduction , Spleen/immunology , Spleen/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Oncotarget ; 5(19): 9022-32, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25296972

ABSTRACT

We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from "traditional" expression biomarkers that only assess concentrations of single genes.


Subject(s)
Biomarkers, Tumor/genetics , Computational Biology/methods , Signal Transduction/genetics , Transcriptome/genetics , Urinary Bladder Neoplasms/genetics , Algorithms , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis/methods , Urinary Bladder/cytology
16.
Cancer Med ; 3(4): 737-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24692240

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) modulate progression of certain solid tumors. The G-CSF- or GM-CSF-secreting cancers, albeit not very common are, however, among the most rapidly advancing ones due to a cytokine-mediated immune suppression and angiogenesis. Similarly, de novo angiogenesis and vasculogenesis may complicate adjuvant use of recombinant G-CSF or GM-CSF thus possibly contributing to a cancer relapse. Rapid diagnostic tools to differentiate G-CSF- or GM-CSF-secreting cancers are not well developed therefore hindering efforts to individualize treatments for these patients. Given an increasing utilization of adjuvant G-/GM-CSF in cancer therapy, we aimed to summarize recent studies exploring their roles in pathophysiology of solid tumors and to provide insights into some complexities of their therapeutic applications.


Subject(s)
Granulocyte Colony-Stimulating Factor/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Neoplasms/metabolism , Animals , Humans , Signal Transduction
17.
Front Mol Biosci ; 1: 8, 2014.
Article in English | MEDLINE | ID: mdl-25988149

ABSTRACT

The diversity of the installed sequencing and microarray equipment make it increasingly difficult to compare and analyze the gene expression datasets obtained using the different methods. Many applications requiring high-quality and low error rates cannot make use of available data using traditional analytical approaches. Recently, we proposed a new concept of signalome-wide analysis of functional changes in the intracellular pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the signaling pathway activation (SPA). We also developed methods to compare the gene expression data obtained using multiple platforms and minimizing the error rates by mapping the gene expression data onto the known and custom signaling pathways. This technique for the first time makes it possible to analyze the functional features of intracellular regulation on a mathematical basis. In this study we show that the OncoFinder method significantly reduces the errors introduced by transcriptome-wide experimental techniques. We compared the gene expression data for the same biological samples obtained by both the next generation sequencing (NGS) and microarray methods. For these different techniques we demonstrate that there is virtually no correlation between the gene expression values for all datasets analyzed (R (2) < 0.1). In contrast, when the OncoFinder algorithm is applied to the data we observed clear-cut correlations between the NGS and microarray gene expression datasets. The SPA profiles obtained using NGS and microarray techniques were almost identical for the same biological samples allowing for the platform-agnostic analytical applications. We conclude that this feature of the OncoFinder enables to characterize the functional states of the transcriptomes and interactomes more accurately as before, which makes OncoFinder a method of choice for many applications including genetics, physiology, biomedicine, and molecular diagnostics.

18.
Front Genet ; 4: 247, 2013.
Article in English | MEDLINE | ID: mdl-24298280

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. They are aberrantly expressed in many human cancers and are potential therapeutic targets and molecular biomarkers. METHODS: In this study, we for the first time validated the reported data on the entire set of published differential miRNAs (102 in total) through a series of transcriptome-wide experiments. We have conducted genome-wide miRNA profiling in 17 urothelial carcinoma bladder tissues and in nine normal urothelial mucosa samples using three methods: (1) An Illumina HT-12 microarray hybridization (MA) analysis (2) a suppression-subtractive hybridization (SSH) assay followed by deep sequencing (DS) and (3) DS alone. RESULTS: We show that DS data correlate with previously published information in 87% of cases, whereas MA and SSH data have far smaller correlations with the published information (6 and 9% of cases, respectively). qRT-PCR tests confirmed reliability of the DS data. CONCLUSIONS: Based on our data, MA and SSH data appear to be inadequate for studying differential miRNA expression in the bladder. IMPACT: We report the first comprehensive validated database of miRNA markers of human bladder cancer.

19.
Proc Natl Acad Sci U S A ; 110(48): 19472-7, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218577

ABSTRACT

Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS. We investigated the mechanisms that regulate hsERVPRODH enhancer activity. We showed that the hsERVPRODH enhancer and the internal CpG island of PRODH synergistically activate its promoter. The enhancer activity of hsERVPRODH is regulated by methylation, and in an undermethylated state it can up-regulate PRODH expression in the hippocampus. The mechanism of hsERVPRODH enhancer activity involves the binding of the transcription factor SOX2, whch is preferentially expressed in hippocampus. We propose that the interaction of hsERVPRODH and PRODH may have contributed to human CNS evolution.


Subject(s)
Endogenous Retroviruses/genetics , Enhancer Elements, Genetic/genetics , Proline Oxidase/genetics , Schizophrenia/genetics , Base Sequence , Cell Line , Cloning, Molecular , DNA Methylation , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Hippocampus/metabolism , Humans , Luciferases , Microarray Analysis , Microscopy, Confocal , Molecular Sequence Data , Proline Oxidase/metabolism , SOXB1 Transcription Factors/metabolism , Sequence Analysis, DNA
20.
Clin Chem Lab Med ; 51(6): 1141-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23023923

ABSTRACT

Rapidly developing next-generation sequencing (NGS) technologies produce a large amount of data across the whole human genome and allow a large number of DNA samples to be analyzed simultaneously. Screening cell-free fetal DNA (cffDNA) obtained from maternal blood using NGS technologies has provided new opportunities for non-invasive prenatal diagnosis (NIPD) of fetal aneuploidies. One of the major challenges to the analysis of fetal abnormalities is the development of accurate and reliable algorithms capable of analyzing large numbers of short sequence reads. Several such algorithms have recently been developed. Here, we provide a review of recent NGS-based NIPD methods as well as the available algorithms for short-read sequence analysis. We furthermore introduce the practical application of these algorithms for the detection of different types of fetal aneuploidies, and compare the performance, cost and complexity of each approach for clinical deployment. Our review identifies several main technologies and trends in NGS-based NIPD. The main considerations for clinical development for NIPD and screening tests using DNA sequencing are: accuracy, intellectual property, cost and the ability to screen for a wide range of chromosomal abnormalities and genetic defects. The cost of the diagnostic test depends on the sequencing method, diagnostic algorithm and volume of the tests. If the cost of sequencing equipment and reagents remains at or around current levels, targeted approaches for sequencing-based aneuploidy testing and SNP-based methods are preferred.


Subject(s)
Aneuploidy , DNA/blood , Genetic Testing/methods , Prenatal Diagnosis/methods , Sequence Analysis, DNA/methods , Algorithms , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...